Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

Circuit and System Architecture for DNA-Guided
Self-Assembly of Nanoelectronics

Jaidev P. PatwardhanT, Chris DwyerT, Alvin R. LebeckT, and Daniel J. Sorin*
{jaidev,dwyer,alvy} @cs.duke.edu, sorin@ee.duke.edu

tDept. of Computer Science iDept. of Electrical & Computer Engineering
Duke University Duke University
Durham, NC 27708 Durham, NC 27708
Abstract

This paper explores the architectural challenges introduced by emerging
bottom-up fabrication of nanoelectronic circuits and develops an architec-
ture that meets these challenges. While our implementation is based on one
specific technology, we believe the architecture is compatible with other
emerging technologies. The specific nanotechnology we explore uses pat-
terned DNA nanostructures and carbon nanotube FETSs to create a hierar-
chical design. Patterned DNA nanostructures provide a scaffold for the
placement and interconnection of CNFETs to create a limited size circuit
(node). These nodes are interconnected using DNA-guided self-assembly,
but without the control available in the patterned nanostructures, thus pro-
ducing a random interconnect. Three characteristics of this technology that
significantly impact architecture are 1) limited node size, 2) random node
interconnection, and 3) high defect rates. We present an accumulator-based
active network architecture that addresses these three challenges.

1 Introduction

Technology change is fuel for architectural innovation. Evolutionary changes in
CMOS have inspired research on several important topics including wire dominated
designs, power dissipation, and fault tolerance. A revolutionary technology change,
such as replacing CMOS, is a potentially disruptive event in the design of computing
systems. Emerging technologies for further miniaturization have capabilities and lim-
itations that can significantly influence computer architecture, and require re-examin-
ing or rebuilding abstractions originally tailored for CMOS. This paper explores the
architectural challenges introduced by emerging bottom-up fabrication of nanoelec-
tronic circuits and develops an architecture that meets these challenges.

In Section 2, we describe the one specific nanotechnology on which we focus in
this paper: DNA-guided self-assembly of carbon nanotube devices and wires. How-
ever, we believe our architecture is applicable to a broader class of technologies with
similar characteristics. Carbon nanotubes have been used to create transistor behavior
[3, 17], thus maintaining the same device abstraction as used in CMOS with the
potential of greater device densities, lower cost, and lower power consumption.
Unfortunately, current top-down fabrication techniques (e.g., photolithography) can-
not precisely place or interconnect components as small as carbon nanotubes (which
have diameters on the order of a couple of nanometers).

In Section 3, we discuss the impact of this nanotechnology on circuit design. Cir-
cuit designs must balance three competing issues: regularity, complexity, and defect
tolerance. A circuit design must use regular patterns of structures to simplify the
DNA self-assembly and avoid defects in it. A circuit, however, also requires some
amount of complexity if it is to perform useful computation. Lastly, circuits that are
self-assembled with DNA are liable to have defects that must be tolerated.

To overcome these challenges and develop nanoelectronic circuits, we propose in
Section 4 to use patterned DNA nanostructures [38] as a scaffold to which we can
attach carbon nanotubes. The DNA nanostructures create a limited size circuit (node)
of carbon nanotube transistors (CNFETs). DNA-guided self-assembly can also pro-

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

vide a scaffold for metal that forms the interconnect between nodes [38], but without
the control available in the patterned nanostructures, thus producing a random inter-
connect.

In Section 5, we discuss the architectural implications of this technology and other
technologies with similar characteristics. In particular, we identify three aspects of
this technology that significantly impact architecture: 1) limited node size, 2) random
interconnection of nodes, and 3) high defect rates. Our goal is to develop an appropri-
ate architecture that can be implemented in any technology with these three character-
istics. We also enumerate several important issues that must be addressed during
architectural development.

As an initial solution to the above three challenges, in Section 6 we develop an
active network architecture with an accumulator-based ISA. The limited node size
prevents the design of a single node that can perform all operations. Instead, we
design several different node types (e.g., add, memory, shift) based on node size con-
straints. To execute, an instruction searches for a node with the appropriate function-
ality (e.g., add), performs its operation, and passes its result to the next dependent
instruction. In this active network execution model, the accumulator and all operands
are stored within a packet rather than at specific nodes, thus reducing per node
resource demands. The active network execution model enables us to encode a series
of dependent instructions within a single packet, and it enables execution to take an
arbitrary path through the network. A configuration phase at system startup maps out
defective nodes and links, organizes a memory system, and configures routing
options within the network. This architecture matches our technology characteristics
since it 1) allows for differing node types with specialized functionality, 2) tolerates a
random interconnection of nodes, and 3) tolerates node and interconnect fabrication
defects.

2 Emerging Nanotechnologies

In this section, we describe the specific nanotechnologies used in this paper. We
discuss the electronic components (Section 2.1), DNA self-assembly of these compo-
nents into circuit nodes (Section 2.2), and the large-scale interconnection of these cir-
cuit nodes (Section 4.4).

2.1 Carbon Nanotube Electronics

There are many choices for constructing nanoelectronic devices and nanowires.
One such promising nanoelectronic device is a carbon nanotube field effect transistor
[31], in which the application of a gate voltage [13, 34, 31] can modulate the conduc-
tivity of a semiconducting nanotube. Recent advances enable separating metallic nan-
otubes from semiconducting nanotubes and controlling the length of individual
nanotubes [30, 39, 40, 25]. Therefore, we can use both types of carbon nanotubes to
construct logic gates, memory (e.g., with cross-coupled NOR gates), and circuit inter-
connect. To explore the potential of CNFETs, we simulate several circuits using a
customized SPICE 3f5 kernel that can model CNFET behavior in logic gates. Prelim-
inary comparisons against a 45nm predictive CMOS model and the 18nm ITRS pre-
diction indicate that CNFET circuit performance will likely be better. The added
benefit that CNFETs are amenable to self-assembly makes this an attractive alterna-
tive, or supplement, to silicon device technology.

2.2 DNA Tiles and Nanostructures

To overcome the challenge of nanoelectronic integration, we exploit the ability of
DNA self-assemblies to produce patterned nanostructures. We use DNA self-assem-
blies to create a patterned scaffolding onto which we can programmably attach carbon
nanotubes. DNA’s well-known double-helix structure is formed through its well-

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

understood base-pairing rules—adenine (A) to thymine (T) and cytosine (C) to gua-
nine (G). By specifying a particular sequence of base pairs on a single strand of DNA,
we can exploit the base-pair rules as organizational instructions. We use unpaired, sin-
gle-strand regions (ssDNA) extending from the ends of one nano-scale object to spe-
cifically bind to another object displaying the complementary ssDNA. Therefore, a
region of ssDNA and its complementary ssDNA act as tags1 (T and T) for orienting
the two objects in 3-space. These tags are a key feature of DNA self-assembly tech-
niques. By appending DNA to nano-scale objects it can act as “smart glue” for orga-
nizing those objects in space [29].

As scaffolding for nanoelectronic integration, we plan to use DNA tiles [35,22]
that are nanostructures composed of several DNA strands. Most of the strands bind
together to form a complex of double-stranded DNA. Each tile can have a small num-
ber of ssDNA tags for binding with other tiles. During annealing, the tiles bind
together to form regular structures in two dimensional space. Although the bindings
and resulting structure can be used to perform computation [1, 27], we are interested
in DNA’s ability to self-assemble into large-scale nanostructures. DNA tiles can be
assembled into large 2-dimensional sheets or lattices by properly designing their tags.
Lattices composed of hundreds of thousands of tiles and extending up to at least 10
microns on their long edge have been created [22, 35].

For this paper we focus on a particular structure
that creates a ‘waffle’-like lattice with repeating
cavities of ~16x16nm and 4nm separation
between cavities [38, 37]. Figure 1 shows an
atomic force microscopy (AFM) image of a lat-
tice.> This type of lattice has been experimen-
tally demonstrated and can achieve sizes that
extend beyond 1 micron on each side (i.e., more
than 50 cavities on a side).

i o0 g3 " To attach the carbon nanotube devices to the
AFM of DNA Lattice DNA tile scaffolding, we plan to adopt a
FIGURE 1. A DNA scaffolding recently demonstrated technique for attaching
for carbon nanotube circuits ssDNA tags to carbon nanotubes [9]. We can
attach ssDNA tags to nanotubes (a process
called functionalization3), and these tags will bind to the complementary ssDNA
strand protruding from the DNA tile scaffolding. While the demonstrated operation of
CNFETs and the ability to functionalize them make them a promising option for
nanoelectronic devices, the DNA self-assembly technique is independent of the spe-
cific nanoelectronic device used.

3 Implications for Nanoelectronic Circuit Architecture

To use the technology described in Section 2, the nanoelectronic circuit architec-
ture must strike a balance between 1) the regularity of DNA self-assembly patterning
capabilities, 2) the complexity required for sophisticated system designs and 3) foler-
ance to the inevitable defects present in nanoscale systems. The remainder of this sec-
tion elaborates on each of these issues, and we focus on the fundamental differences
between this nanoarchitecture and current CMOS based architectures.

1. These codes are sometimes called sticky-ends due to their glue-like binding behavior.
2. AFM image courtesy of Thomas LaBean.

3. Functionalization is the process of adding a molecule to another material by chemical reac-
tion.

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

3.1 Regularity

While the design of CMOS based circuits can be simplified by the use of regular-
ity (e.g., standard cell VLSI), regularity is not a fundamental requirement. However,
as described previously, DNA self-assembly technology can currently create only
periodic arrays of identical unit cells. DNA self-assembly has a potential limitation in
that the probability of incorrect tag matches increases as the number of unique tags
increases. For each type of connection, we need a unique pair of complementary
ssDNA tags. With more types of connections and a fixed number of base-pairs per
tag, the tags become more similar (i.e., differ in fewer base-pairs) and partial matches
become more likely. For example, if a functionalized nanotube binds to a partially
matched tag, then it is in the wrong position. This situation is analogous to the Ham-
ming distance between encodings of symbols; if we need to encode more symbols
with the same number of bits, then the Hamming distance is smaller and the probabil-
ity of an error is greater. Minimizing the number of tags reduces the chances of partial
matches, which could cause positional defects, during annealing. Therefore, repetitive
structures are desirable, and circuit and system designers should strive to use them as
much as possible.

3.2 Complexity

Design complexity is a function of the number of different component types and
the placement of these components. Current CMOS based circuits can arbitrarily
place hundreds of millions of devices (both nFET and pFET) and wires with precision
on the order of 0.10um. This precision is achieved by using photolithography to spec-
ify exactly where each individual component belongs. With the combination of car-
bon nanotube devices and DNA self-assemblies, we are trying to develop circuits that
are complex enough to perform interesting computation. We can limit the number of
component types to just CNFETSs, nanotube wires, and metal plating for connecting
wires. However, with DNA self-assemblies, we cannot specify component placement
with nearly the same degree of complexity as CMOS. Complexity must be introduced
without requiring a large number of tags. This mirrors the desire to use regular struc-
tures that minimize the number of tags. However, regular structures typically limit
complexity.

Thus, the utility of self-assembled DNA arrays depends on the amount of com-
plexity that we can introduce at various abstraction levels without causing an intracta-
ble number of partial matches. Consider the graph generated from the netlist of a
transistor-level design of a combinational circuit. The vertices are transistor terminals
and the edges are wires connecting the device terminals. A two-input CMOS NAND
gate has about ten vertices. Clearly, the naive approach of assuming a unique tag for
each vertex in the graph requires a large number of unique tags (even ignoring fan-out
issues). This will cause too many partial matches that create bridging faults (shorts),
rendering the circuit mostly useless.

3.3 Defect Tolerance

A defect is a permanent physical fault that was introduced during fabrication. We
consider two types of defects: functional and positional. A functional defect corre-
sponds to a component that does not perform its specified function (e.g., a transistor
that does not conduct when it should). A positional defect corresponds to a (function-
ally correct) component that is placed incorrectly. Both CMOS and DNA self-assem-
bled nanoelectronics can incur functional defects, but only self-assembly is likely to
incur positional defects. Positional defects can be both defects of omission and com-
mission. An omissive positional defect occurs when a component is not placed where
it belongs. A commissive positional defect occurs when a component is placed where
it does not belong (i.c., the partial match described above). Omissive defects behave

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

SEEsmamaaama

inm 16nm

MR N AN N AN A

——— Nanowire above lattice
—————— Nanowire below lattice

+ Crossed Nanotube Transistor
DNA Scaffold

FIGURE 2. DNA Scaffold for Nanoelectronics

similar to functional defects. Commissive defects are more dangerous, since they can
behave like bridging faults. For example, a misplaced nanowire could cause a short
between power and ground or it could change circuit functionality in unpredictable
ways (e.g., by erroneously connecting the output of a gate to its input).

In CMOS based circuits, there is limited support for defect tolerance. Photolitho-
graphic placement of components is a mature technology that incurs few defects.
However, in architectures with hundreds of millions of devices and wires, defects will
still occur with some probability (i.e., yield is less than 100%). CMOS microchips are
thus tested for defects. If a defect is uncovered and it cannot be tolerated, the chip is
discarded. However, some limited number of defects can be tolerated. For example, a
defect in a cache or memory cell can be tolerated by systems that provide redundant
cells and allow for re-mapping.

Functional defect rates for carbon nanotube devices and positional defect rates for
DNA assembled nanoelectronics are currently unknown due to the relative immatu-
rity of the technologies. Functional defect tolerance can be achieved with the same
techniques used in CMOS, since the problem is not fundamentally different. Toler-
ance of commissive positional defects, however, is a new challenge. Because of the
unknown positional defect rates, our approach is to first strive to minimize positional
defects by exploiting regularity in DNA self-assemblies. However, as complexity
increases and regularity decreases, the probability of positional defects increases.
Thus, more sophisticated circuitry will require more defect tolerance.

4 Nanoelectronic Circuit Building Blocks

This section describes a proposed nanoelectronic circuit architecture (shown in
Figure 2) with structures based on a grid of CNFETs interconnected with conducting
carbon nanotubes. At a high level, our proposed design addresses the conflicting
goals of regularity and complexity by placing identical unit cells in the cavities of an
aperiodic patterned DNA lattice. The lattice is regular in structure, but it has aperiodic
binding points which we will use to connect the unit cells in complex patterns. This
highlights a key difference between our work and existing approaches. Current nano-
electronic architectural approaches assume regularity in both the structure and the
interconnect. We first present our initial proposed unit cell and then the proposed lat-
tice. This is followed by an example design of a full adder. We then discuss how to
self-assemble multiple building blocks into a larger system.

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

4.1 Exploiting Regularity: A Replicated Unit Cell

The unit cell in our design is a three terminal pFET sitting in the cavity of a DNA
lattice. We could place a complete NOR gate in the cavity, but we leave that as future
work. To place the pFET in the cavity, we need to functionalize one semiconducting
and one conducting nanotube such that they bind to the complementary ssDNA tags
on the cavity edges and form a cross. We assume one of the nanotubes is wrapped in a
thin insulating layer, such as SiO, [12]. The conducting nanotube functions as the
gate of the pFET.

Using carbon nanotubes of a short length (~16nm) precludes commissive posi-
tional defects in which a carbon nanotube binds in two different cavities. By using
two sets of tags in alternating cavities in each dimension (see Figure 2) and by using
carbon nanotubes of a precise length, a nanotube cannot span across the DNA lattice
to another cavity with the same tags. The distance between adjacent cavities is only
4nm, so if the same tag is used in adjacent cavities, then a nanotube may bind across
the lattice arm rather than within a cavity. Using a checkerboard pattern of alternating
tags, with sufficient Hamming distance, eliminates positional commissive defects.
This approach requires carbon nanotubes of a precise length, which may be possible
using a sonochemical method [24] to cut the originally long nanotubes into short
lengths and then using size-exclusion chromatography to separate the nanotubes by
their length. This technique must be applied to both the semiconducting and conduct-
ing nanotubes.

We augment this unit cell with short conducting carbon nanotubes that lie adjacent
to the cavity on both the top and bottom of the DNA lattice. The short nanotubes are
far enough apart to avoid cross-talk and may also be wrapped with an insulating poly-
mer if necessary. The nanotubes initially do not intersect to form complete circuits.
Instead, an electrical connection between nanotubes must be explicitly created by
specifying an appropriate tag on the DNA lattice to which a gold nanosphere will
bind. The nanosphere nucleates metal ions to form the connection with the help of an
electroless plating process [5, 20]. Similarly, connecting transistors may require spec-
ifying whether the device connects to the top or bottom conducting nanotube. Form-
ing these connections is where we add complexity to our design, and we explain how
to introduce this non-regular patterning in Section 4.2.

This unit cell design fosters regular, repetitive structures. All nanotubes are the
same length (16nm) and we have five sets of nanotubes that are functionalized with
different tags. Four sets of nanotubes are used for the CNFETs; two semiconducting
sets and two conducting sets. This corresponds to the two tag sets of the checkerboard
pattern of cavity tags. A nanotube from one set can bind to any cavity with the com-
plementary tag. Similarly, the interconnect nanotubes (the fifth set) can bind adjacent
to any cavity directly on either the top or bottom of the DNA lattice in either the ver-
tical or horizontal direction. This approach enables the use of a regular pattern for the
base DNA lattice scaffolding.

4.2 Introducing Complexity: An Aperiodic Pattern for
Interconnecting Cells

Our building block, while regular in structure, has aperiodic binding points for
connecting together the nanowires of the unit cell. We plan to achieve this aperiodic
pattern through either sequential assembly of tiles or extending recent work on one-
dimensional aperiodicity [36] to two dimensions.

We can now construct complex circuits by specifying the electroless plating
points in the DNA lattice. For each of the top and bottom of the lattice, the plating
point options include: the three transistor terminals to nanowire, interconnect nanow-
ire in the vertical directions North and South, and interconnect nanowire in the hori-
zontal directions East and West. We assume that to create a straight-through

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

<]
3
>
3

—®

7
J_LL

|
J_l_L

GND

//@4““““ I —

FIGURE 3. 1-bit Adder

connection in the vertical direction requires both the North and South connections;
similarly, both the East and West connections are required for a straight connection in
the horizontal direction. We can build pass-throughs from the top-level interconnect
to the bottom-level by connecting a transistor terminal to both interconnects.

Only a single tag on the DNA lattice is required to specify the plating points
where the gold nanospheres can bind on the lattice. It is this tag that has the aperiodic
pattern, and gold will bind only where the tag appears. We note that this approach
minimizes positional defects since the nanotubes are of specific lengths that can only
bind in the appropriate positions of the lattice. In contrast, if we used long nanowires
to connect distant points, then the number of tags to which they could potentially
incorrectly bind is the number of tags on the circumference of a circle with radius
equal to the nanowire’s length.

4.3 A Proposed Adder

Given the above ability to connect nanodevices and nanowires together, we can
create a complete circuit. This subsection presents the design of a full adder. Figure 3
shows one design that uses only p-type transistors* and a corresponding layout on an
eight by six DNA lattice. This layout was performed manually with minimal effort to
optimize the layout. From this diagram we see that this design uses only 18 transistors
out of the 48 available transistors. With only two levels of interconnect and that inter-
connect sharing a unit cell with a transistor, we are often forced to leave the transistor
unused while the unit cell nanowires provide connectivity for the circuit. We are
exploring CAD tools to automate and optimize the layout. In this design, power and
ground must be explicitly routed with our interconnect, consuming additional routing
options and unit cells. We are currently investigating alternative approaches to pro-
viding power and ground planes. One such approach is to sandwich the DNA lattice
between two insulating layers that permit only large metallic nanospheres to protrude
through the layers. A metallic layer on each side of the insulated DNA lattice can
serve as the power and ground electrodes.

4. CNFETs are naturally p-type, but research has demonstrated the ability to electrostatically
dope them to be n-type [3]. Future research will explore complementary logic designs with
both n-type and p-type devices.

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

The above full adder is designed for easy expansion to an arbitrary n-bit adder.
The carry out of one bit directly aligns with the carry in of the next higher-order bit.
Therefore, no additional overhead, in terms of lattice cells, is incurred to support sim-
ple multi-bit ripple carry adders.

4.4 Large-scale Interconnection of Circuit Nodes

The computational capabilities of
the proposed building block (node) is
limited by the size of the DNA lattice.
Increasing the computing capacity
requires interconnecting multiple
building blocks. Using inexpensive
laboratory equipment we could simul-
taneously self-assemble as many as
10'2 identical, but small, nodes. This
number of nodes, if placed on a two
micron pitch, would cover a 175 cm

X 175 cm area, or the equivalent area FIGURE 4. Schematic rendering of a self-
of ~40 x 300 mm wafers. Although assembled DNA interconnection network
) after metal deposition

the size of an individual node is well
above the minimum feature size of
photolithography, the number of nodes fabricated through self-assembly limits how
heavily the overall process can rely on silicon fabrication processes. Self-assembling
nodes onto a substrate at well-defined places is also difficult without “naming” each
placement site (pick and place methods will not scale to this number of components).
Even with DNA tags on the substrate, the nodes are not guaranteed to fall into place
precisely. Most conventional architectures require precise placement and interconnec-
tion between circuits. Therefore, even if we could use a conventional photolitho-
graphically patterned network to interconnect nodes, the result would be a random
interconnection due to the random placement of nodes on the substrate. This is the
sacrifice a self-assembly process imposes: precision and control exist only at small
length scales (e.g., < 1 micron, for now). Our solution to this problem involves a large
scale self-assembling process that can interconnect nodes on a substrate using another
form of DNA-guided self-assembly. Individual DNA strands self-assemble between
node edges, providing a scaffold for metal that forms an electrical connection, which
has been experimentally demonstrated [23, 38]. This larger scale process cannot
deliver the precise control found in the earlier process used to assemble the nodes, but
it can fabricate single wire interconnections between the edges of the nodes, as illus-
trated in Figure 4.

5 Architectural Implications

The process of using DNA-guided self-assembly to create nanoelectronic circuits
presents several challenges that must be addressed when designing a system. The
three primary aspects of the process are 1) small-scale control of placement and con-
nectivity within a single node, 2) large-scale randomness in node placement and inter-
connection, and 3) high defect rate. These three aspects significantly impact
architectural decisions, particularly since conventional architectures assume precise
control at both the small and large-scale.

5.1 Limitations of Small-scale Control

The ability of DNA-guided self-assembly to achieve only small-scale control
impacts architectural decisions in several ways. Three of the most significant are: lim-
ited space, limited coordination, and limited communication.

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

Limited space. The 50x50 node can have a maximum of 2500 CNFETs, however it
is unlikely that the usable number will reach even 40% of this. On-node interconnect
will reduce efficiency since a node only has two-levels of interconnect. Furthermore,
a portion of each node must be allocated as a “pad” for the DNA interconnect to other
nodes. These two factors can dramatically reduce the usable area on a node. This lim-
ited node size presents a trade-off in node design. At one extreme, we could design
just a single node type that contains both computation and storage capabilities. How-
ever, since the storage and computation circuits must share the node, each may be
severely limited in capability. Alternatively, we could design a few specialized node
types, some devoted to computation and others devoted to storage. Even when
designing a specialized node, the limited space impacts architectural decisions. For
example, large state machines are not an option since there is insufficient space for
state storage. Similarly, the number of bits available in a storage node may be limited,
thus affecting an architecture’s word size.

Limited communication. Without large-scale control, there is limited communica-
tion among nodes. Each node has four neighbors and there is no long haul communi-
cation. Furthermore, the connections from a node to each of its neighbors is limited to
a single wire. Although the degree of each node or the number of connections
between neighbors could be increased, each connection occupies precious edge space.
Conventional designs exploit multiple metal layers for long-haul communication and
large-scale control to create multi-wire connections between components. Therefore,
the architecture must avoid relying on sophisticated communication hardware.

Limited coordination. Conventional CMOS designs rely on precise control during
fabrication to create sophisticated circuits (e.g., a 64-bit adder with carry lookahead).
For our technology, if the most sophisticated node is a full-adder, then it is unlikely
that 64 such nodes can be coordinated to implement a 64-bit adder. Coordination
among nodes is very limited and it is difficult to a priori configure a group of nodes to
operate in a coordinated manner. Each node can perform only limited coordination
with its immediate neighbors.

5.2 Large-Scale Randomness

Our proposed self-assembly process provides excellent control at the small-scale,
however it cannot achieve such control at large scales. The resulting randomness
introduces some additional issues that architectures must address.

Node placement. The self-assembly process does not guarantee where any particular
node will lie in the final circuit. Each node simply attempts to connect to other nearby
nodes. The architecture and machine organization must accommodate this arbitrary
placement of functional blocks.

Node orientation. Similar to the random node placement, the assembly process we
envision does not provide control over node orientation. Any system design must tol-
erate arbitrary node orientations, and cannot make a priori assumptions on orienta-
tion.

Node connectivity. Connections between nodes are not guaranteed to succeed during
self-assembly. Therefore, it is possible for any node to have between zero and four
functioning connections to its neighbors. The architecture must not make any a priori
assumptions about available connectivity. When combined with random orientation,
it is possible for nodes to connect in a triangular shape rather than the 2x2 grid one
would assume with nodes that have degree four.

5.3 High Defect Rates

An inherent aspect of any self-assembly process is defects. These fabrication
defects can influence node functionality and connectivity. Some of the interconnect
defects cause the above problems with connectivity. While some aspects of fabrica-

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

tion can reduce the likelihood of defects (e.g., purification steps or overdesign of
DNA tags), there will always be a significant number of defects and any architecture
using these technologies must tolerate these defects.

5.4 Architectural Challenges

The above discussion exposes several aspects of this fabrication technique for
nano-scale circuits that must be addressed by any architecture and its corresponding
implementations. In this subsection, we enumerate several important challenges to
developing an appropriate architecture for this emerging technology. This list is not
meant to be exhaustive, but rather to highlight some important challenges.

Node Design. The architect must decide what functionality to place in each node.
Should there be homogeneous nodes or heterogeneous nodes? If heterogeneous, then
what types of nodes? How does node design affect connectivity/communication with
other nodes, and what primitives should be provided?

Utilizing Multiple Nodes. Since individual nodes do not contain sufficient computa-
tion and storage to perform much useful work in isolation, then an architect must
determine how to exploit multiple nodes. This must be achieved given the above lim-
itations on coordination, communication, placement, orientation, and connectivity.

Routing with Limited Connectivity. Traditional routing techniques may not directly
apply since there is limited space for the complexity of dynamic routing and there are
insufficient guarantees on node placement and connectivity to use conventional static
routing. The designer must develop a routing technique that overcomes these chal-
lenges.

Developing an Execution Model. The execution model embodies the software visi-
ble aspects of the architecture and can be influenced by implementation constraints or
instruction set requirements. For the envisioned fabrication technique, the execution
model must overcome the severe implementation constraints outlined above while
still enabling a reasonable instruction set.

Developing an Instruction Set. Programmable systems require an interface that
enables software to specify operations. Typically this is achieved by the instruction
set architecture (ISA). The ISA may be influenced by the underlying capabilities of
the technology. Given our fabrication technique, the architect must design an appro-
priate ISA that supports the above execution model.

Providing a Memory System. Storage is a crucial component of most computing
systems regardless of the execution model. The ability to retain values for future use
and to name and find particular values is necessary for most computing paradigms.

Interfacing to the Micro-scale. An important aspect of any nano-scale system is the
interconnection to larger-scale components (e.g., micro-scale). This connection is
necessary for at least providing an I/O interface for communication with the outside
world. It may be possible for the architecture to exploit this interface in other ways.

The challenge is to address each of these issues such that we arrive at a function-
ing system. There are likely many possible approaches to developing a functioning
system. In this paper, we adopt the philosophy of “make it work first, optimize later.”

6 An Architecture for Self-Assembled Nano-electronics

As an initial approach for addressing the issues raised in Section 5, we propose an
architecture that is compatible with our fabrication technology. The architecture is
like an active network [32] in that execution packets that contain instructions and
operands search through a loosely structured sea of processing and memory nodes for
the functionality that they need at each step of execution. This architecture matches
our technology characteristics since it 1) allows for differing node types with special-

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

Nodes within a cell 2D mesh of cells

FIGURE 5. System Model. Processing nodes (P), memory nodes (M), memory port nodes
(M*), anchor node (A), and viaduct (V). This schematic is not to scale (w.r.t. nodes per
cell)

ized functionality, 2) tolerates a random interconnection of nodes, and 3) tolerates
node and interconnect defects.

6.1 System Overview

The system model (see Figure 5) is a random interconnection of various node
types, in which each node contains circuitry for communication and some specialized
circuitry (e.g., processing, memory, etc.). Groups of nodes are organized into cells. A
node communicates with a neighboring node via a single link that is asynchronous
and bidirectional (time-multiplexed on a single physical wire). Each cell has a viaduct
that is its connection to a micro-scale, and one of the many nodes connected to the
viaduct acts as the anchor node for the cell. Inter cell communication occurs through
a micro-scale interconnection network. The memory nodes in each cell comprise a
portion of the global memory space. Some fraction of memory nodes are configured
as memory ports to provide an interface between execution packets and memory stor-
age.

To impose structure on the interconnection network and the memory system, there
is a configuration phase that occurs before any execution. Reconfigurable architec-
tures have demonstrated that this approach is important to achieve high performance
in the context of highly focused (i.e., aggressive) or highly defective technologies,
including nanotechnology. We describe the purpose, beyond defect tolerance, and
operation of the configuration in detail later in this section.

While node functionality is heterogeneous, all nodes have some common respon-
sibilities. Each node generates its own local clock and communicates asynchronously
with its neighboring nodes using signaling techniques similar to push-style pipeline
systems. High level communication between two devices over a single wire can be
managed using simple two- and four-phase single wire techniques [33]. Each node
must also contain routing functionality for determining the outgoing link for an
incoming packet (or the result of an operation).

6.2 Execution Model

The execution model relies on an accumulator-based ISA. Conceptually, the accu-
mulator is initialized and then a sequence of operations are performed on the corre-
sponding series of operands. The accumulator-based ISA reduces the need for
widespread a priori coordination and communication among many components, since
the only data dependence involves the accumulator and instructions are processed in
order [21]. We support the accumulator-based execution by forming an execution
packet that contains the operations, the accumulator, and all operands in appropriate

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

order. The packet simply searches within a cell for the requisite functional units (or
memory ports) in the order specified by the operation sequence.

Logically, each functional unit performs its specified operation, removes the oper-
and and forwards the new accumulator and the remaining operands to the subsequent
functional units. Each subsequent functional unit performs a similar sequence until all
operations in the packet are completed. Memory operations generate memory packets
that are handled by the memory ports. When a given execution packet finishes, it
instantiates the next execution packet in a process called chaining. Chaining involves
a conditional test at the end of the packet execution to determine what packet to
instantiate next.

Our system and execution model enables significant parallelism by instantiating
multiple execution packets within a cell and in multiple cells. While this parallelism
is an important aspect of our architecture that fully exploits the capabilities of the
underlying technology, in our initial work we focus primarily on the operation of a
single cell and sequentially instantiate execution packets.

6.3 Interconnection Network: Finding Resources for Execution

The active network architecture must enable packets to find what they need with-
out deadlocking or livelocking, despite high defect rates and traveling through a ran-
domly interconnected sea of nodes. To avoid request/response deadlock (i.e., fetch
deadlock), we support three logical networks: one for execution packets, one for
memory request packets and one for memory response packets. We implement these
logical networks using a combination of virtual channels [6] and separate physical
networks for memory and execution. Each logical network uses back pressure flow
control and up*/down* routing to provide deadlock free routing [28].

To implement these techniques with our limited node capacity, we equip each
node with two forms of communication: 1) broadcast and 2) routing along a gradient
[19, 18]. The gradients represent a spanning tree with a viaduct as the root. This tree
is used for up*/down* routing. During the configuration phase, a gradient is estab-
lished by initiating a broadcast at a viaduct with a specialized packet. A node only
forwards the first packet it receives. Creating spanning trees using a broadcast flood
maps out defective nodes and links, since no other node will have a gradient pointer
to the defective node. We use five gradients in our system: one for each planar direc-
tion (north, south, east, and west) and an additional gradient that establishes the cell
boundaries and the direction toward the viaduct within each cell (called the cell gradi-
ent). Each cell represents a local name space for memory and includes both data and
instructions. As part of the configuration phase, memory locations and memory ports
are allocated and the physical memory network is established. Further details of the
configuration and routing are beyond the scope of this paper.

7 Current Status

We are currently pursuing the various aspects of fabricating a simple circuit,
including: carbon nanotube length control and separation and aperiodic DNA lattices.
We are also developing a tool chain to aid in the design and evaluation of our circuits
and systems. In particular, we have initial SPICE simulations of CNT circuits, and we
are developing a circuit layout tool to automate design. This layout tool will also pro-
vide input for SPICE and a custom DNA sequence generator. We are developing a
custom simulator to evaluate the architectural aspects of our system. So far, we have
simulated the correct operation of all configuration phases and the correct execution
of a two packet sequence in a single cell.

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

8 Related Work

The most related work is Dwyer’s proposal to use a DNA guided self-assembly
technique to build a massively parallel computer [10, 8]. The proposed machine has
no communication between processing elements and thus targets problems that are
“embarrassingly parallel.” Goldstein’s inspiring work on nanofabrics leverages recon-
figurable self-assembled nanoelectronics to provide a defect tolerant architecture
[14]. Resonant tunneling diodes (two terminal devices) are configured into supern-
odes of appropriate functionality after a test phase maps out defective components.
The nanofabric is reconfigured for each program that executes. DeHon presents an
architecture that exploits three terminal devices (FETs) by self-assembling arrays of
nanowires and FETs [7]. Sparing and remapping are used to provide defect tolerance.
Heath et al.’s Teramac design reconfigures redundant nanoscale components, with
high individual defect probabilities, into a functional system [16]. Han exploits
NAND multiplexing and reconfiguration to support a defect tolerant architecture [15].
More generally, Nikolic et al. argue that reconfiguration is the best approach for han-
dling fabrication defects, but that other redundancy techniques are necessary to han-
dle transient faults [26]. Ancona proposes a systolic array architecture for single
electron transistors [2], but it requires precise control over fabrication. Beckett pro-
poses a nanoarchitecture based on integrated processing and memory nodes with a
local interconnection [4]. Fountain’s propagating instruction processor is a pipelined
SIMD machine [11].

9 Conclusions

In this paper, we have explored the effects of emerging nanotechnologies on com-
puter architectures. We discussed one particular set of technologies that we use for
designing nanoelectronic circuits, and we highlighted the differences between circuits
in this technology and CMOS. We then presented an architecture that addresses the
challenges posed by DNA-based self-assembly of carbon nanotubes and other nano-
technologies with similar characteristics. To overcome (1) limited node size, (2) ran-
dom interconnection of nodes, and (3) a high defect rate, we developed an active-
network architecture with an accumulator-based ISA. This architecture enables exe-
cution packets to search through a sea of heterogeneous nodes for the functionality
they need, while avoiding defective nodes. We use an initial configuration phase to
impose some limited structure on the computing substrate, particularly for routing
and memory allocation. While this architecture is only a relatively unoptimized first
step, it addresses some of the key challenges in this class of nanotechnology and it
highlights the technology’s architectural implications.

10 Acknowledgments

This work is supported primarily by an NSF ITR grant CCR-0326157 and a grant
from the Duke University Provost’s Common Fund. Other support includes NSF
EIA-9972879 and equipment donations from IBM and Intel. We thank the many
members of the TROIKA project: Thomas LaBean, Hao Yan, John Reif, Jie Liu, Sean
Washburn, Dorothy Erie, and Paul Franzon.

References

[1] L. Adleman. Molecular Computation of Solutions to Combinatorial Problems. Science,
266(5187):1021-1024, November 1994.

[2] M. G. Ancona. Systolic Processor Designs Using Single-Electron Digital Circuits.
Superlattices and Microstructures, 20(4), 1996.

[3] Adrian Bachtold, Peter Hadley, Takeshi Nakanishi, and Cees Dekker. Logic Circuits

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

with Carbon Nanotube Transistors. Science, 294:1317-1320, November 2001.

Paul Beckett and Andrew Jennings. Toward Nanocomputer Architecture. In
Proceedings of the Seventh Asia-Pacific Computer Systems Architecture Conference,
pages 141-150, 2002.

Erez Braun, Yoav Eichen, Uri Sivan, and Gdalyahu Ben-Yoseph. DNA-Templated
Assembly and Electrode Attachment of a Conducting Silver Wire. Nature, 391:775—
778, 1998.

William J. Dally. Virtual Channel Flow Control. /EEE Transactions on Parallel and
Distributed Systems, 3(2):194-205, March 1992.

Andre DeHon. Array-Based Architecture for FET-Based, Nanoscale Eletronics. /[EEE
Transactions on Nanotechnology, 2(1):23-32, March 2003.

C. Dwyer. Self-Assembled Computer Architecture: Design and Fabrication Theory.
PhD thesis, University of North Carolina, May 2003.

C. Dwyer, M. Guthold, M. Falvo, S.Washburn, R. Superfine, and D. Erie. DNA
Functionalized Single-Walled Carbon Nanotubes. Nanotechnology, 13:601-604, 2002.

C. Dwyer, L. Vicci, J. Poulton, D. Erie, R. Superfine, S. Washburn, and R. M. Taylor.
The Design of DNA Self-Assembled Computing Circuitry. [EEE Transactions on VLSI,
To appear 2003.

T. J. Fountain, M. J. B. Duff, D. G. Crawley, C. D. Tomlinson, and C. D. Moffat. The
Use of Nanoelectronic Devices in Highly-Parallel Computing Systems. [EEE
Transactions on VLSI Systems, 6(1):31-38, 1998.

Qiang Fu, Chenguang Lu, and Jie Liu. Selective Coating of Single Wall Carbon
Nanotubes with Thin SiO2 Layer. Nano Letters, 2(4):329-332, 2002.

M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Young-Gui Yoon, M. S. C. Mazzoni,
Hyoung Joon Choi, Jisoon Ihm, Steven G. Louie, A. Zettle, and Paul L. McEuen.
Crossed Nanotube Junctions. Science, 288:494-497, April 2001.

Seth C. Goldstein and Mihai Budiu. NanoFabrics: Spatial Computing Using Molecular
Electronics. In Proceedings of the 28th Annual International Symposium on Computer
Architecture, pages 178—191, July 2001.

Jie Han and Pieter Jonker. A Defect- and Fault-Tolerant Architecture for
Nanocomputers. Nanotechnology, 14:224-230, January 2003.

James R. Heath, Philip J. Kuekes, Gregory S. Snider, and R. Stanley Williams. A
Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology. Science,
280:1716-1721, June 1998.

Yu Huang, Xiangfeng Duan, YiCui, LincolnJ. Lauhon, Kyoun-Ha Kim, and
Charles M. Lieber. Logic Gates and Computation from Assembled Nanowire Building
Blocks. Science, 294:1313-1317, November 2001.

Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed
Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks. In
Mobile Computing and Networking, pages 56—67, 2000.

David B Johnson and David A Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks. In Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer
Academic Publishers, 1996.

K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, and E. Braun. Sequence-
Specific Molecular Lithography on Single DNA Molecules. Science, 297:72, 2002.
Ho-Seop Kim and James E. Smith. An Instruction Set and Microarchitecture for
Instruction Level Distributed Processing. In Proceedings of the 29th Annual
International Symposium on Computer Architecture, May 2002.

Thomas H. LaBean, Hao Yan, Jens Kopatsch, Furong Liu, Erik Winfree, John H. Reif,
and Nadrian Seeman. Construction, Analysis, Ligation, and Self-Assembly of DNA
Triple Crossover Complexes. Journal of the American Chemistry Society, 122:1848—
1860, 2000.

D. Liu, J.H. Reif, and T.H. LaBean. DNA Nanotubes: Construction and Characterization
of Filaments. In The 8th International Meeting on DNA Based Computers (DNA 8),
Sapporo, Japan, June 2002.

Jie Liu, Andrew G. Rinzler, Hongjie Dai, Jason H. Hafner, R. Kelley Bradley, Peter J.

(28]

[34]

[38]

[39]

[40]

Appears in Proceedings of Foundations of Nanoscience, ©ScienceTechnica, 2004

Boul, Adrian Lu, Terry Iverson, Konstantin Shelimov, Chad B. Huffman, Fernando
Rodriguez-Macias, Young-Seok Shon, T.Randall Lee, Daniel T. Colbert, and
Richard E. Smalley. Fullerene Pipes. Science, 280:1253-1256, 1998.

S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas,
A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa, and K. D. Sams. Lithographically
Cut Single-walled Carbon Nanotubes: Controlling Length Distribution and Introducing
End-group Functionality. Nano Letters, 3(8):1007-1012, August 2003.

K. Nikolic, A. Sadek, and M. Forshaw. Fault-Tolerant Techniques for Nanocomputers.
Nanotechnology, 13:357-362, 2002.

JH. Reif, T.H. LaBean, and N.C. Seeman. Challenges and Applications for Self-
Assembled DNA Nanostructures. In A. Condon and G. Rozenberg, editors, Proc. Sixth
International Workshop on DNA-Based Computers, Leiden, The Netherlands. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, Lecture Notes in
Computer Science, Springer-Verlag, Berlin Heidelber, volume 2054, June 2000.

Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray, Roger M.
Needham, Thomas L. Rodeheffer, Edwin H. Satterthwaite, and Charles P. Thacker.
Autonet: A High-speed, Self-Configuring Local Area Network Using Point to Point
Links. IEEE Journal on Selected Areas in Communications, 9(8), October 1991.

N.C. Seeman. DNA Engineering and its Application to Nanotechnology. Trends in
Biotech, 17:437-443, 1999.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. W. Shan,
C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley. Electronic Structure Control of
Single-walled Carbon Nanotube Functionalization. Science, 301:1519—-1522, September
2003.

S.J. Tans, A.R.M. Verschueren, and C. Dekker. Room-temperature Transistor Based on
a Single Carbon Nanotube. Nature, 393:49-52, 1998.

David L. Tennenhouse and DavidJ. Wetherall. Towards an Active Network
Architecture. Computer Communication Review, 26(2), 1996.

K. van Berkel and A. Bink. Single-track Handshake Signaling with Application to
Micropipelines and Handshake Circuits. In Procceding of the Seconds International

Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 122—
133, March 1996.

S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and Ph. Avouris. Vertical Scaling of
Carbon Nanotube Field-Effect Transistors using Top Gate Electrodes. Applied Physics
Letters, 80:3817-3819, May 2002.

E. Winfree, F. Liu, L. A. Wenzler, and N.C. Seeman. Design and Self-Assembly of
Two-Dimensional DNA Crystals. Nature, 394:539, 1998.

Hao Yan, Thomas H. LaBean, Liping Feng, and John H. Reif. Directed Nucleation
Assembly of Barcode Patterned DNA Lattices. Proceedings of the National Academy of
Sciences, 100(14):8103-8108, July 2003.

Hao Yan, Sung Ha Park, Liping Feng, Gleb Finkelstein, John H. Reif, and Thomas H.
LaBean. 4x4 DNA Tile and Lattices: Characterization, Self-Assembly, and
Metallization of a Novel DNA Nanostructure Motif. In Proceedings of the Ninth
International Meeting on DNA Based Computers (DNA9Y), June 2003.

Hao Yan, Sung Ha Park, Gleb Finkelstein, John H. Reif, and Thomas H. LaBean. DNA
Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires.
Science, September 2003.

Ming Zheng, Anand Jagota, Ellen Semke, Bruce Diner, Robert Mclean, Steve Lustig,
Raymond Richardson, and Nancy Tassi. DNA-Assisted Dispersion and Separation of
Carbon Nanotubes. Nature Materials, 2:338-342, May 2003.

Ming Zheng, Anand Jagota, Michael S. Strano, Adelina P. Santos, Paul Barone,
S. Grace Chou, Bruce A. Dine, Mildred S. Dresselhaus, Robert S. Mclean, G. Bibiana
Onoa, Georgii G. Samsonidze, Ellen D. Semke, Monica Usrey, and Dennis J. Walls.
Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly.
Science, 302:1545-1548, November 2003.

	Circuit and System Architecture for DNA-Guided Self-Assembly of Nanoelectronics
	1 Introduction
	2 Emerging Nanotechnologies
	2.1 Carbon Nanotube Electronics
	2.2 DNA Tiles and Nanostructures
	FIGURE 1. A DNA scaffolding for carbon nanotube circuits

	3 Implications for Nanoelectronic Circuit Architecture
	3.1 Regularity
	3.2 Complexity
	3.3 Defect Tolerance

	4 Nanoelectronic Circuit Building Blocks
	FIGURE 2. DNA Scaffold for Nanoelectronics
	4.1 Exploiting Regularity: A Replicated Unit Cell
	4.2 Introducing Complexity: An Aperiodic Pattern for Interconnecting Cells
	4.3 A Proposed Adder
	FIGURE 3. 1-bit Adder

	4.4 Large-scale Interconnection of Circuit Nodes
	FIGURE 4. Schematic rendering of a self- assembled DNA interconnection network after metal deposition

	5 Architectural Implications
	5.1 Limitations of Small-scale Control
	Limited space.
	Limited communication
	Limited coordination

	5.2 Large-Scale Randomness
	Node placement
	Node orientation
	Node connectivity

	5.3 High Defect Rates
	5.4 Architectural Challenges
	Node Design
	Utilizing Multiple Nodes
	Routing with Limited Connectivity
	Developing an Execution Model
	Developing an Instruction Set
	Providing a Memory System
	Interfacing to the Micro-scale

	6 An Architecture for Self-Assembled Nano-electronics
	6.1 System Overview
	FIGURE 5. System Model. Processing nodes (P), memory nodes (M), memory port nodes (M*), anchor node (A), and viaduct (V). This schematic is not to scale (w.r.t. nodes per cell)

	6.2 Execution Model
	6.3 Interconnection Network: Finding Resources for Execution

	7 Current Status
	8 Related Work
	9 Conclusions
	10 Acknowledgments

