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Abstract
The shift in technology away from silicon CMOS to novel nanoscale technologies requires new design
tools. In this paper, we explore one particular nanotechnology: carbon nanotube transistors that are self-
assembled into circuits by using DNA. We develop design tools and demonstrate how to use them to
develop circuitry based on this nanotechnology.
1. Introduction
The rapid advance of silicon technology toward single-
nanometer device feature sizes and the foreshadowed
difficulties with these developments are driving research into
alternative technologies and architectures that can either
replace or supplement existing silicon technologies [7].
Researchers are exploring novel nanoscale components, such
as carbon nanotube transistors, as well as techniques for
integrating these components into circuits. Existing top-down
fabrication technology (i.e., photolithography) cannot resolve
dimensions as small as desired, which has spurred research in
self-assembling fabrication processes.

We are exploring one particular set of nanotechnologies,
carbon nanotube FETs (CNFETs), that are self-assembled
using DNA as a scaffolding. CNFETs have been demonstrated
to exhibit excellent switching properties [1, 10, 2, 8, 11]. To
fabricate a circuit out of CNFETs, which are on the order of
1.7nm in diameter (far smaller than current photolithographic
capabilities), we plan to exploit the self-assembly properties of
DNA. Strands of DNA connect to each other if the base pairs
on the strands are complementary. Our proposed technology is
fabricated by using lattices of DNA as shown in Figure 1
[15]1.

Then, by attaching a tag of single-strand DNA (ssDNA) to a
specific point on the lattice and the complementary ssDNA tag
to one end of a nanotube (which is called functionalization of
the nanotube), we could programmably attach that end of the
nanotube to the scaffold [5]. The precursor work for this has
recently been demonstrated by making a back-gated CNFET
with source and drain leads using metallized DNA strands [9].

We plan to use multiple pairs of DNA tags to create different
connections on the lattice, in order to connect both ends of
multiple nanotubes to the scaffold. If we attach two nanotubes
such that they are perpendicular and cross each other, the top
one (chosen to be metallic) acts as a gate and the bottom one
1 Image courtesy of Thomas LaBean.
(chosen to be semiconducting) acts as a channel in a CNFET.
Figure 2 shows cross-connected nanotubes spanning cavities
in the DNA lattice. We also plan to attach single nanotube
wires to each side of each cavity. To implement a connection
between two nanotube wires, we will specify a DNA tag at the
gap between the wires that attracts a metallic nanosphere that
later serves as a nucleation site for chemical electroless
plating. By programmably attaching CNFETs and specifying
wire connections, we will fabricate circuits with this
technology.

However, due to current limitations in DNA self-assembly
technology we do not believe that we can create lattices
greater than ~2 microns on a side. Thus, the functionality on
any given lattice is limited. To develop large-scale systems,
we plan to interconnect multiple lattice nodes. We are
currently exploring computer architectures that are amenable
to this kind of computational substrate. The focus of this paper
is on the computer-aided design tools needed for this work.

To design lattice circuitry, we need various custom design
tools to facilitate the new technology. For example, we need to
be able to specify where nanotubes assemble to the lattice and
specify their connectivity. Since placement and routing are
produced by DNA self-assembly, these processes require
design tools that can choose DNA tags (which sequence of

Figure 1. AFM image of DNA lattice
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base pairs) for the scaffolding and for functionalizing the
nanotubes. Unlike existing design tools for silicon CMOS
technology, our tools must produce DNA tag sequences rather
than mask artwork.

In this paper, we present the design tools and flow we have
developed for the design of self-assembled circuitry. Section 2
describes our method and illustrates where we have introduced
custom tools to handle the new technology. We also briefly
describe a computer architecture that we have developed that
is amenable to the self-assembling technology and the
behavioral simulator we are using to explore architectural
mechanism design. Section 3 describes the application of our
design tools to several logic circuits. These results demonstrate
a new capability in designing self-assembled circuitry.

2. Methodology
In this section, we present our design methodology. We begin
with a high-level overview of the design flow, and then we
discuss the architectural, circuit, and DNA level design flows.

2.1 Overview
Figure 3 illustrates the design flow we have applied to the self-
assembling process. The design flow begins with an
architectural description that is used to manually create a
behavioral simulator that can verify the high-level procedural

operations of the system. Once verified, the behavioral
description can be used to manually capture gate-level
modules for input to a complementary transistor synthesis tool.
We have focused our efforts on the generation of layout for our
process assuming a transistor level module description. Once a
feasible layout has been generated and verified it is used to
create an ordered set of DNA sequence allocations for
fabrication. The allocation process orders the assembly of the
circuit so that a constant number of DNA sequences can be
used independently of the circuit size.

The remainder of this section discusses the methods we use to
design systems and circuits in this self-assembling technology.
Section 2.2 describes our architectural design process and an
example architecture. Section 2.3 discusses our circuit design
process and leads into the discussion in Section 2.4 on device
design and a discussion of the self-assembling process in
Section 2.5.

2.2 Architectural Design
The larger context of our project is to develop self-assembled
computing systems and this requires behavioral design and
simulation tools. We have developed an active network
architecture that is amenable to self-assembly, and we briefly
describe the system here to motivate our device-level design
tool work.

The limited circuit size in our self-assembling technology
precludes making single circuits that can perform all
operations. Instead, we assemble several different circuit
(node) types (e.g., ALU, memory) into a larger network. For
ease of fabrication, nodes are randomly interconnected with
bit-serial links. The large scale network of nodes is divided
into cells, each of which has a via that connects it to the micro-
scale. A configuration phase at system startup imposes some
limited structure on this otherwise random sea of nodes.
Configuration maps out defective nodes and links, organizes
the memory nodes into a memory system, and establishes
routing options within the network.

In our active network execution model, an execution packet
traverses this network in search of the resources it needs to
perform its instructions. For example, a packet needing to
execute an add would search for an ALU node. Each execution
packet contains instructions, an accumulator, and all the

Figure 2. Schematic of the DNA lattice scaffold
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operands necessary for executing the instructions. By storing
everything in the packet rather than at specific nodes, we
reduce the per-node storage requirements. After executing an
instruction, the packet integrates the result into its accumulator
for use by subsequent instructions in the packet. The active
network execution model enables us to encode a series of
dependent instructions within a single packet, and it enables
execution to take an arbitrary path through the network.

The memory system is composed of the memory nodes in the
network. The configuration phase allocates unique identifiers
to each memory node. To access memory (e.g., to perform a
load), an execution packet searches for a memory port node,
which is similar to a memory node but has been configured to
service memory requests. The memory port node creates a
memory packet that it then sends to the cell’s serialization
point, a specific node attached to the via, from which it is
broadcast to all memory nodes in the cell. The corresponding
memory node responds by broadcasting the result, and the
memory port that issued the request receives this response and
passes it to the execution packet.

We have developed a custom simulator to model a single cell
at the bit-serial link level to capture network communication
behavior. We also use the simulator to verify architectural
behavior and to gather insight into execution mechanisms and
optimizations. Figure 4 illustrates the execution of a simple
series of instructions (LOAD X, LOAD Y, ADD, STORE Z).
The execution begins in the upper right corner at a memory
port node and follows a path toward the lower left corner as the
execution packet searches for the appropriate nodes.

A detailed treatment of the system and its configuration and
execution model can be found elsewhere [12]. We have
included this brief overview here as motivation for our tool
development and as an example behavioral simulation tool that
addresses some of the issues of designing nanoscale self-
assembled systems. The behavioral simulator models system-
level aspects of this self-assembling technology including
node interconnections. The remainder of our tools focus on the
design of individual nodes.

2.3 Circuit Design
The complete circuit description for the architecture described
in Section 2.2 is not present here. Instead we demonstrate our

process for a NAND gate, full-adder, and SR-latch. The circuit
level flow begins with a device (transistor) level description of
the system generated by the synthesis tools; in our case, a suite
of tools from Mentor Graphics, Inc. produces this output. The
transistor netlist is used to verify the functional properties of
the circuit using a switch-level simulator. The unique
constraints of our self-assembling process (~100 x 100 FETs)
make large circuits infeasible. Fortunately that means that a
high resolution SPICE simulation can be used to verify circuit
functionality before the layout process. In this limited sense,
the self-assembling technology simplifies the design flow
compared to a conventional technology because it forces
system architects to explicitly partition their designs.

The layout process can include automated tools and/or manual
full-custom steps. Our custom layout tools provide an interface
for manual layout and the exploration of design spaces through
automated techniques. The constrained circuit sizes in our
technology appear to make it more feasible to apply fully
automated layout generation to the entire system than with
conventional technologies.

The generated layout is used by a custom circuit extractor to
back-annotate the original circuit with wire models and
additional parasitics derived from the geometry of the layout.
This requires the extractor to model the as-fabricated structure
of the circuit and use geometric relationships to refine the
circuit. The back-annotated circuit is simulated by the
modified SPICE kernel and empirical device models as
described in Section 2.1. The results of this simulation are
used to verify the timing and power constraints of the circuit
and can be used to make decisions that feedback to the system
description and earlier design process.

2.4 Device Design
The device level flow begins with the transistor level
description of the logic module that has been synthesized and
optimized by a logic design tool. This description is first
verified using a switch-level simulator and then fed to a
custom automated place and route layout generator. A SPICE
deck is then extracted from the generated layout to estimate
performance including wire delays and other parasitics. We
use a modified SPICE 3f5 kernel similar to [6] and a custom
semi-empirical device model for the CNFETs [3, 11] and
parasitics [3] to estimate the performance of the circuitry. The
details of this model are currently under review for publication
and are only briefly mentioned here for completeness. Our
results are consistent with the reference data used in our
models and recent observations of CNFET performance [1,
13].

2.5 Self-assembled DNA Design
In an analogous fashion to the generation of masks from layout
artwork, DNA sequences are used by custom DNA strand
manufacturers to create the DNA tags that will be attached to
carbon nanotubes and direct the assembly of the circuit during
the fabrication process.

The layout is used by a custom assembler. The assembler is a
tool that renders the layout into an ordered sequence of
assembly steps and DNA tag identifiers as well as the self-
assembling components (nanotubes or nanoparticles) to which
the tags must be attached.

The assembler uses the stitching algorithm illustrated in
Figure 5 to order the DNA tag allocations. This pattern is

Figure 4. Network of circuit nodes illustrating the behavioral
execution of a packet.
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better than simple line scans because it minimizes the span of
the lattice at all stages which appears to be important in
forming planar DNA lattices [14].

Our assembly ordering assumes a single “active” cavity (i.e.
one available for binding nanotubes, etc.) in the scaffold at
each step in the process. That is, we assume the scaffold is
extended in the direction of the next cavity (as specified by the
assembly pattern) before each assembly step. To prevent
components from binding to previously assembled cavities the
lattice can be passivated with short DNA fragments that bind
to unused locations on the cavity after each assembly step.

At each step the assembler generates the tags and components
specified in the layout for that cavity. Figure 6 illustrates the
positions of each tag in the cavity.

Each position has four associated orientations: north, east,
south, and west. That is, a DNA tag can bind a component at
any of its orientations. Further, nanoparticles bind to a
reserved portion of the DNA tag and do not prevent nanotubes
from binding to the same tag (i.e., nanotubes have their own
portion as well).

A tag and orientation are specified for each attachment point of
a component. For example, a nanoparticle can be specified
with a single tag and orientation. The specifier N7 represents
the north (side) of location 7. A nanoparticle at N7 and a
nanotube connecting (N7, S5) will fuse during the
metallization process.

The exact sequence of the DNA used for each tag is taken from
a pool of sequences that are known not to interfere with each
other. The pool is generated using binding energy
minimization techniques to avoid cross-hybridization [4]. The
size of this pool using our technology and this assembly
ordering is 20 sequences. However, the number of DNA
sequences required to form one additional active cavity in the
scaffold lattice scales as the perimeter of the device grows and
minimizing this is a topic of future research.

The output from the assembler, the assembly ordering and
DNA tag allocation, is then used to direct the self-assembly of
the circuit. The remainder of this paper describes the
application of our tools to several simple logic structures.

3. Case Studies
We demonstrate our design methodology by designing a
NAND gate, full-adder, and SR-latch. While these circuits are
trivial, the process we have developed introduces the tools
needed by this self-assembling technology.

Each circuit layout was generated manually and converted to a
SPICE netlist for switch-level verification. The NAND layout
is illustrated in Figure 7.

The other two circuits were designed in a similar fashion and
Table 1 lists several simple measures of their layout.

Each cavity has an area of 4 x 10-4 µm2 determined by the
spacing of the DNA scaffold, which has been designed to span
a 20 nm pitch.

Table 2 lists the transition energies (Et) and switching delay
(td) for each circuit. These results were obtained by loading
each device output with a FO-4 inverter tree and conditioning
each square wave input through a series of four CNFET

Figure 5. The assembly order follows a radial
boustrophedonic pattern to build the lattice.
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Table 1. Layout Features

Total occupied
area (cavities)

Span (cavities)
Layout

efficiency
(FETs/cavity)

NAND 9 4 x 4 0.44

full-adder 65 10 x 11 0.43

SR-latch 12 5 x 4 0.60

Figure 7. Self-assembled NAND layout (boundary cavities
have been removed) Only nanotubes, particles, and scaffold

DNA are shown.
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inverters. The results in Table 2 are from the worst-case
single-input transition event for each circuit.

In Table 3, we illustrate the assembly sequence of the NAND
gate as generated by our tool. Each row represents a single
active cavity (indicated by the number in braces as specified in
Figure 5) and the assembly actions needed to complete it. For
example, steps 0-2 are used to extend the lattice in a particular
direction to follow the stitching pattern and steps 4-14
assemble the components for the cavity (cavity 2 is active). In
this table, ‘V’ indicates a Vdd connection (1.0 V) and ‘G’
indicates a ground connection (0 V). These connections could
be made out of the plane of the lattice (or node) to microscale
contacts above and below the lattice.

Some cavities are not used in this layout due to the placement
of the circuit on an overly large lattice (in this case a 5 x 5
cavity lattice). Table 3 illustrates how tangled the self-
assembly process can become even for trivial design problems
(e.g., a NAND gate). This underscores the need for the
continued development of design tools capable of handling this
emerging technology.

4. Conclusions
The development of self-assembling technologies that can
either replace or supplement existing silicon technologies
requires new design automation tools because of the
distinctions between self-assembling and conventional
photolithography processes. This fundamental change in
technology motivates the development of design tools that
address these differences.

In this paper, we have presented the design tools for one such
self-assembling circuit technology. The technology we
explore, which uses DNA to programmably self-assemble the
circuit components, requires different tools than those used for
silicon CMOS design. Starting with a circuit description, we
use tools for placement, routing, and electrical simulation to
develop a viable circuit. We then use a custom tool to generate
DNA tag sequences that will enable this circuit to be fabricated
using self-assembly.

Future work will extend this tool chain beyond individual
circuit nodes in order to encompass large-scale designs,
including computer architectures. 5. References
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