TCP Performance Re-Visited

Annie P. Foong , Thomas R. Huff , Herbert H. Hum , Jaidev P. Patwardhan', Greg J. Regnier
Intel Corporation
2111 NE 25th Ave
Hillsboro, OR 97124

{anni e. foong, tom huf f, herbert. hum greg.j.regnier}@ntel.com

‘Department of Computer Science
Duke University

Durham, NC 27708
j ai dev@s. duke. edu

Abstract

Detailed measurements and analyses for the Linux-2.4
TCP stack on current adapters and processors are pre-
sented. We describe the impact of CPU scaling and memory
bus loading on TCP performance. As CPU speeds outstrip
I/0 and memory speeds, many generally accepted notions
of TCP performance begin to unravel. In-depth examina-
tions and explanations of previously held TCP performance
truths are provided, and we expose cases where these as-
sumptions and rules of thumb no longer hold in modern-
day implementations. We conclude that unless major archi-
tectural changes are adopted, we would be hard-pressed to
continue relying on the 1GHz/1Gbps rule of thumb.

1 Introduction

With the advent of 10 Gigabit Ethernet (GBE) and IP
storage network requirements, there has been tremendous
industry activity in the area of TCP/IP Offload Engines
adapters (TOES) [1, 8, 13]. The motivation behind these ef-
forts is the recognition that the processing requirements of
a 10 GBE network adapter surpasses both the CPU abilities
and memory bandwidths of mainstream servers. However,
the availability of production-ready TOEs and performance
projections is limited at best. In order to understand the per-
formance implications and value of TOEs, we need an up-
date on the latest TCP implementations and performances.
Although TCP performance has been widely studied in var-
ious forms [7, 10, 6], there are no performance analyses in
today’s context. The goal of this study is therefore two-fold:

e To confirm the validity of certain TCP performance
“truths” and proposed optimizations in modern day
implementations®

e To take measurements and analyses to a deeper level
not previously taken by other researchers.

A seminal paper by Jacobson et al [7] showed that the
number of instructions for TCP protocol processing itself
is minimal. The main message is that the implementa-
tion of TCP, and not the protocol itself, is the limiting fac-
tor. This bodes well for the ability of TCP to scale to
very high speeds. However, TCP requires substantial sup-
port from the operating system. Researchers [10] contend
that such non-data touching portions are the main over-
heads, especially for small transfers. To alleviate the de-
mand on the server’s CPU, recent improvements in net-
work adapters include checksum offloading, interrupt co-
alescing and segmentation offloading [6]. Similarly, there
has also been large improvements in drivers and operating
system’s support of networking. Despite these optimiza-
tions over time, the distribution of TCP processing has re-
mained fairly constant. The major overheads of TCP per-
formance can be divided into two categories: per byte costs,
primarily data-touching operations such as checksums and
copies; and per packet costs, including TCP protocol pro-
cessing, interrupt handling, kernel overheads (spinlocks,
context switches, timers) and buffer manipulations. Fur-
thermore, beyond CPU clock speeds, many factors affect
the amount of TCP/IP throughput that a given computer
can support, including memory bandwidth and capacity of

Iperformance numbers reported in this paper do not necessarily repre-
sent the best performance available for the processors named and should
not be used to compare processor performances

its 1/0O subsystem. More importantly, the implementations
of network interfaces and the TCP/IP software play crucial
roles in performance output. Of the many possibilities, we
have narrowed down our study to the following:

i Focus on the bulk data transfer paths

ii Validate the 1Hz/1bps rule and interpret CPU scaling
for TCP

iii ldentify optimizations with a code-path analysis of one
current reference implementation of TCP

iv Measure and analyze TCP processing distributions

v ldentify the memory bandwidth requirements and
where they are consumed

In this aspect, this paper aims to deliver a template
for analyzing network processing in general. The basic
methodologies used in this analysis can be extended to
other workloads (e.g. micro-benchmarks for connections,
SpecWeb99, etc.) or implementations (TOES).

The rest of this paper is organized as follows: Section 2
describes the methodology and tools we use in our experi-
ments, and highlight limitations of our approach. We take a
bottom-up approach in our analysis. We explain and profile
the Linux TCP transmit and receive paths in Section 3. We
analyze the memory requirements of network processing in
Section 4. Based on this groundwork, we present our per-
formance results in Section 5. Our analysis also provides
details and explanations where the results diverge from the
expected in Section 6. We conclude with projections on
what the future landscape might be for TCP in Section 7.

2 Methodology

Ideally, we would have performed all our experiments on
the same set of platforms and operating systems (OS). Our
original plan was to focus on Linux due to its open source.
However, as we progressed in our analysis, we hit limita-
tions imposed by hardware, measurement tools and product
availability, and had to supplement our analyses with mea-
surements on Windows®2000. We will highlight those in-
stances here?.

2.1 Tools
To determine the processing distribution of TCP, we used

the Intel®VTune ™Performance Analyzer, which allows for
low-overhead sampling. The VTune™sampler interrupts

2Intel, Pentium are registered trademarks of Intel Corporation. Win-
dows, Windows 2000 are registered trademarks of Microsoft Corporation.
Other products and company names mentioned may be trademarks of their
respective owners

the processor at specified events (e.g. every n clockticks),
and records its execution context at that sample. Given
enough samples, the result is a statistical profile of the ratio
of time spent in a particular routine. This statistical profile
identifies hotspots in the code for in-depth analysis. Impor-
tant complements to VTune™include the AHA and emon
utilities. AHA is used to sample and compare performance
of two processors or frequencies, and allows us insights into
CPU scaling performance at the instruction level. If two
time profiles are taken at different frequencies for a given
processor, the resulting analysis can identify which sections
of code scale with frequency, and which may be limited
by other non-scaling factors, such as memory latency and
1/0. The emon event monitoring tool is used to collect infor-
mation on the processor and chipset performance counters.
This tool is necessary in getting the front-side bus (FSB)
and direct memory accesses (DMA) measurements.

2.2 System Description and Limitations

The ttcp program is one micro-benchmark commonly
used for bulk data transfer analysis. We use default TCP/IP
settings and do not attempt to fine-tune the settings. There
are several limitations to ttcp. It uses a single-stream, one-
way communication. A connection is set up once between
two nodes. Data is sent from the transmitter(s) to the re-
ceiver(s), reusing the same buffer space for all iterations.
ttcp workload primarily characterizes bulk data transfer be-
havior, and must be understood in that context. We choose
this simple workload because it exercises the typical and
optimal TCP code path [7], and allows us to focus on un-
derstanding the network stack without application-related
distractions. It also gives us the upper bound on network
performance of a given transfer size. To measure total mem-
ory requirements (i.e. including DMA), we need access to
counters in the chipset. At the time of data collection, emon
was available for Windows®and only for Intel®82450NX
chipsets. The available test system is a 450MHz Pen-
tium®I1 processor system with the 82450NX chipset. For-
tunately the measurements we are interested in are not af-
fected by the age of this system. We use a 100Mbps net-
work card for these experiments to better match the slower
system. Our experimental setup is as follows:

Performance/Profiles | Mem Requirement
Processor Pentium®4 Pentium®I|
Frequency 0.8GHz,2.4GHz(base) 450MHz
L2 Cache Size 512KB 2MB
Chipset 850 82450NX
GBE Adapter Intel®Pro 1000 Intel®Pro100

Table 1. Experimental Setup

3 Understanding One Reference Implemen-
tation of TCP/IP

3.1 Linux 2.4.16 Receive and Transmit fast paths

Previous work exists that traces the Linux code path
from the top down (socket call) and the bottom up (driver
code) [9, 13]. However, what happens in between, espe-
cially of buffers and queue management, is not as well doc-
umented. We believe that an understanding of these func-
tions is important in characterizing TCP performance. As
such, we map all the functions in the Linux TCP bulk data
paths and highlight the performance-dependent details here.
On a receive, there can potentially be two situations: the ap-
plication issues a read before data arrives (i.e. application
buffers are pre-posted), or data arrives waiting for a read.
This will lead to two very different data paths (Figure 1).
In the non pre-posted path, the packet is checksummed
first, and then copied when the application buffers are avail-
able. In the other path, the packet undergoes a checksum
and copy concurrently, a well-known optimization first pro-
posed by Jacobson et al [7]. The correct implementation of
integrated checksum and copy (csum-copy) is not trivial. In
fact, researchers [6] working off Linux-2.3.99-pre8 did not
see any improvement in performance with csum-copy. As
we shall see in Section 4, the current version of Linux has
done so successfully. Linux-2.4 makes use of three pseudo
queues for this purpose: a normal receive queue, prequeue
(for csum-copy), and a backlog queue (which serves as the
overflow queue when the other receive queues are in use).
In addition, in order for csum-copy to happen, three condi-
tions must be met: the sequence numbers are in order, the
current process is the reader waiting on the socket and the
application buffer is large enough to receive data available
in the socket buffer. The first 2 conditions are usually met
in bulk data transfers.

The transmit (TX) path is more straightforward: csum-
copy is always exercised in bulk data transfers (Figure 2).
Worthy of note is that the driver maintains a memory-
mapped status register which allows the TCP stack to be
aware of driver resources and throttle transmits accordingly.
This is done so that the driver never “drops” a packet on
transmits. On successful transmission of packet(s), an inter-
rupt occurs which reclaims buffer resources, unmap DMA
and schedules the bottom half of transmit interrupt to run.

3.2 Functional breakdown of hotspots

Figures 3, 4 show the breakdown of the major compo-
nents of TCP/IP processing. It was difficult to compare our
TCP processing profiles with other work [7, 10, 6] due to
the different viewpoints of the stack and workload used.

Overall, there is general agreement along these lines: Ker-
nel overheads, sockets and protocol processing make up the
bulk of small transfers, while data touching and interrupt
processing make up the bulk of large transfers. We sepa-
rated protocol processing (e.g. tcp_recvmsg) from the sock-
ets layer (e.g. sock_recvmsg, libc routines). With this view,
we concur with Jacobson et al [7] that it is the implementa-
tion, and not the protocol itself, that is the bottleneck. What
we typically refer to as TCP protocol processing takes up
about 7% on receives, and 10-15% on transmits. On the
other hand, the sockets interface and corresponding library
support can take up to 34% for small transfers. Another
large portion of kernel overheads is in system_call routine,
which handles all the bookkeeping required to support sys-
tem calls, parameter checks and context switching. We also
found the CPU requirements of the driver code itself (4%-
11%) to be somewhat less than previous studies, probably
due to the added sophistication in driver code. E.g. in-
stead of allocating buffers on the receipt of every packet,
and increasing the time spent in interrupt, buffers are now
pre-allocated, and continuously monitored for replenish-
ment. Most NICs also support interrupt coalescing on re-
ceive. However, driver and interrupt processing still make
up a large part of processing for large transfers. Not surpris-
ingly, data-touching processing, i.e., checksums and copies,
increases with transfer size. Data-touching operations of
large transfers take up more than one-third of processing.
We observed that a receive of 64B in ttcp exercises the non
pre-posted buffers path, since data arrives much faster than
the application can issue read(). This explains the relatively
large percentage of processing (13%) needed in receiving
a small payload of 64B. As the transfer size increase, the
integrated checksum and copy path is exercised more fre-
quently. In the current socket model, there is no way to
control pre-posting of buffers.

4 Understanding TCP/IP Memory Require-
ments

At a high level, it is generally accepted that the data path
of any network transfers involves three loads on memory.
On a receive, the adapter DMAs data into the receiving
packet buffers, and the CPU reads the data and writes it to
the final application buffers. The reverse happens on trans-
mits. We want to get experimental evidence of such a view,
as well as quantify the effects of TCP control traffic and
caching on memory bus. In reality, we find that memory
loads are highly dependent on the application in question,
buffer sizes and caching behavior. Our goal in this section
is to provide a detailed walk-through of memory access pat-
terns of an application, and account for cache coherency
protocols. We compare our theoretical expectations to mea-
sured values to validate the analysis.

App buffers
reac) JWll——> agpiication

socket buffers Wait for
socket read

copy
checksum

DMA

INTR on arrival

T Packef arrives

App buffers
read() Pre-posted
<00 [l

buffers -A gelsdata
__________ > checksum & copy (if
Wait for ~ socket buffers conditions are right)
data -

4 bma

w INTR on arvival

1 Packet arrives

Figure 1. Receive Path: Non-Preposted
Buffers(top); Pre-Posted Buffers(bottom)

chacksum & copy

write() . —\
hd

Create space for data Kick driver
in socket buffer Post TX

& »
Return lo Application

/\/1 INTR on
transmit

success

|

Packet leaves

Figure 2. Transmit Data Path

4.1 Transmit Path

Total memory traffic is made up of front side bus (FSB)
reads/writes and DMA reads/writes. Figure 5 shows mem-
ory traffic during a transmit. Figure 6 gives the measured
FSB traffic and Figure 7 gives the DMA traffic. The num-
bers referred to in this analysis represent the ratio of mem-
ory to network traffic (e.g. A ratio of 2 implies that 2 bytes
are generated on the memory bus per byte of network traf-
fic). The differences between expected and measured traf-
fic is due to TCP control traffic, retransmissions, contexts
structures, cache invalidations and snoops. The 64B data
point is an exception as TCP control packets have a signifi-
cant effect at small transfer sizes. We use an L2 cache size
of 2MB.

In the case where transfer size < L2 cache, the memory
transactions are as follows:

TX 64B TX 64KB
Copiesicsum Others
Others 5oz, Protocol 5os,

49 10%

Kernel

20% Copiesiesum

34%

Sockets/Lib <
34%
. Protocol
Driver/Intr

Driver/intr 26%,
1% Sockets/Lib
0%

Kernel
36%

Figure 3. TCP Processing Distribution (TX)(as
% of non-idle time)

RX 64B RX 64KB
Cthers Copies/ Cthers
2% opies/ocsum a5

13%

Kemel
Protocol 149,
5%

Sockets/Lib
23%

Kernel
25%

4 Copies/csum
: %

Driver/Intr

Driver/Intr 28% 7%

30% Sockets/Lib

2%

Figure 4. TCP Processing Distribution (RX)(as
% of non-idle time)

CPU reads the application buffer (1): ttcp is written
such that the application buffer is reused on every iteration.
The buffer is brought into cache once, and stays valid. Sub-
sequent reading of this buffer gets its copy from L2. We
expect near zero FSB reads [measured=0.1].

CPU writesto socket buffer (2): We expect the socket
buffer (typically 64KB) to fit in L2. Again, it is brought into
the cache once on initialization, and stays in cache through-
out. On writing to the socket buffer, the copy in host mem-
ory is updated according to the normal cache coherence pro-
tocol (i.e, the written cache line is evicted at a later point or
is returned to memory upon a snoop from 1/0).

NIC DMAsfrom the socket buffer (3): This generates
one DMA read [measured=1.3]. The Memory 10 Controller
(MIOC) takes the opportunity to capture (snharf) the outgo-
ing DMA data during an implicit write-back to host mem-
ory. The number of loads expected on the memory bus is 2

Front Side My
L2 cache @ Read app buffer :: HOSEMBTTIOW
(FSBread)
cached H. -1 appiication
application|s, Buffer
buffer || % MOC
CPU A
cacred || @ =By ookt
m? & (Buffer
Irplicit waite back~SB write)

NIC

Figure 5. S/W transmit path

4]
2
= 3
A
= s
g % f——a—
o 3
QD =
28 .1 ¢ \ /,ﬁ"——-a-———O
@ [N \ /I
T oz !_ /!
2 g
z R 7
5] \ P
o —#=c—t=cong
BB K 16K 256K 20 4 Bl
Transfer sizes

— 4 — FSB Read-- - B - - FSBWhite —a&— FSB Total

Figure 6. Measured FSB Traffic on TX

[measured=2.5].

In the case where transfer size > L2 cache:

CPU reads application buffer (1): The application
buffer is now larger than L2 and is brought into cache on
every iteration. We expect at least one FSB read. In addi-
tion, ttcp attempts to emulate real applications by writing
a pattern into the application buffer before transmission.
In other words, an additional fetch from memory is done.
Contexts are also continuously being brought in and evicted
from L2. We had originally thought that this will increase
the memory load on the FSB. Eviction of modified contexts
would bring about an increase in FSB writes (due to write
backs). However, such was not the case. Due to the large
payload bytes involved at the larger transfer sizes, contexts
evictions and context-related write-backs do not play a sig-
nificant role in FSB traffic.

ratio
)
- rd
/

FSB bytes/Network bytes

0 B [Jeee==- [reereedfonce: flooenen a—
B4B ALS 6K =210 24 £ =0
Transfer sizes

= =4 —DMA Read - - - B - - DMA Wiite —— DA Total

Figure 7. Measured DMA Traffic on TX

Front Side Memory
Bus Bus
‘Witeback oneviction : Host Mermory
L2 cache @ (FBwite) r
cared [, i
application - > B,App,ﬁer
buffer copy MOC
CPU \
{2 Pead pasket er
cached | }» ({FSB read) RX Packet
packet 3 Buiffer
buffer
invalidate
DMA write
NC

Figure 8. Receive Path

CPU writesto socket buffer (2): Depending on eviction
policies, the socket buffer is most likely not in cache. This
would require that a copy be brought in on every iteration.
This gives rise to an extra FSB read than the no-cache case
considered in the overview analysis.

NIC DMAs from socket buffer (3): same as before.

In summary, expected FSB reads = 3 [measured=3.1];
Expected FSB writes = 1 [measured=1.1]; Expected DMA
reads = 1 [measured=1.3]; Expected DMA writes = 0 [mea-
sured=0.06]; Expected total load on the memory bus = 5
[measured=5.6].

4.2 Receive Path
We repeat the same analysis for the receive path. Fig-

ure 8 shows the receive path. Figure 9 shows the measured
FSB traffic and Figure 10 shows the measured DMA traffic

W 4
O
&
S
B k/l
~ 3
e
z
Q —
e, "
z@« -
B -
e ey .
——
A .-
m o
) n
L ot —M-- B L ELLELE | L
BB hLS 16K 256K 2: A BM

Transfer sizes

————F3BRead---B-- - F3BWrite — & FSBTotaJ‘

Figure 9. Measured FSB Traffic on RX

[11]
@
2
-
o
-
=
c
£ o
=
Zz @'
B
@
2
=
o
m
i . ———————————————&———&%
BB hLY 18K ZSEM 2M 404 Bn
Transfer sizes

— ~— DMA Read - - - - - DMA Wiite —a— DMA Total ‘

Figure 10. Measured DMA Traffic on RX

on the receive path.

For the case where transfer size < L2 cache:

NIC DMAsto the packet buffer (1): The NIC DMAs
data into the receive packet buffer and generates one DMA
write [measured=1.3]. The cached copy of packet buffer is
invalidated.

CPU readsfrom the packet buffer (2): For small trans-
fer sizes, we expect the packet buffer to be in cache. How-
ever, this copy was previously invalidated by the DMA
write, and a fetch from memory is needed. This generates
one read on the FSB [measured=1.1].

CPU writes to the application buffer (3): As before,
the application buffer is brought into cache at initialization,
and remains valid. The copies occur without evictions, and
should not generate any FSB write traffic [measured=0.05].
No DMA read traffic is expected [measured=0.1]. Total
load expected on the memory bus is 2 [measured=2.5].

For the case where transfer size > L2 cache:

(1),(2) are same as before

CPU writesto the application buffer (3): Here again,
the application has to be brought into cache on every itera-
tion. We expect at least one FSB read. Additionally, cache
evictions will also force a write-back of the modified ap-
plication, causing one FSB write. The net effect is slightly
worse than the case where a cache is non-existent (due to
extra traffic due to invalidates and cache snoops). In sum-
mary, expected FSB read = 2 [measured=2.2]; Expected
FSB write = 1 [measured=1.1]; Expected DMA read 0
[measured=0.1]; Expected DMA read = 1 [measured=1.3];
Expected total load on the memory bus = 4 [measured=4.7];

Not surprisingly, there is a one to one mapping of net-
work payload to DMA payload. This ratio stayed fairly con-
stant regardless of transfer sizes. Extra memory accesses
are incurred by control traffic and retransmits. As for the
total load on memory, the accepted view of three loads on
the memory bus is a rule of thumb at best. Worthy of note
is the “step-function” that occurs for FSB traffic when the
transfer size is the same as the processor’s cache size. traf-
fic. When transfer sizes are less than L2, the cache is large
enough to accommodate all of the application buffers, the
kernel’s socket and packet buffers, contexts and ttcp code
(minimal). There is a valid copy of application or kernel
buffers in the L2 cache throughout a ttcp run. This may not
be generally true. On the other hand, to completely negate
the effects of the L2 cache, we have used transfer sizes of
(2MB - 6MB), which is atypically large. Every iteration
causes a full eviction of buffers and TCP contexts, giving
rise to the sharp increase in FSB traffic. These two extremes
form the upper and lower bound on memory bandwidth re-
quirement for realistic workloads.

5 Understanding TCP/IP Performance
5.1 Validating 1GHz/1Gbps rule of thumb

The generally accepted rule of thumb is that 1bps of net-
work link requires 1Hz of CPU processing. Figures 11, 12
give a full story of this rule of thumb. (where Hz/bps ratio
= %CPU utilization * processor speed / bandwidth). It had
held up remarkably well over the years, albeit only for bulk
data transfer at large sizes. For smaller transfers, we found
the processing requirement to be 6-7 times as expected.
Moreover, the figures show that network processing is not
scaling with CPU speeds. The processing needs per byte
increase when going from 800MHz to 2.4GHz. This hap-
pens because as CPU speed increases, the disparity between
memory and I/O latencies versus CPU speeds intensifies.
The processor is held up frequently waiting for memory or
I/0 accesses, during which no work can be done. “Idle”
time at such fine granularity is not detected by the OS, and
thus is unable to context switch. Those idle times are ac-
counted as work done and adds to CPU utilization. The

GHz/Gbps TX

6 T\'SE_
5 1 fo
2 1
2 5]
i
2 T
1?\” I] P
e
0 NITEI N]

648 1KB 2KB 16KB 684KB

Transfer Size

E800MHz Q2. 4GHz

Figure 11. CPU requirements of network pro-
cessing (TX)

scaling effect is more obvious at larger transfers. As seen
earlier, interrupts and copies make up the largest hotspots
at these transfer sizes. Interrupts incur un-cacheable (UC)
I/0O accesses, while copies incur memory accesses. The in-
crease in Hz/bps is also more obvious in the transmit path
due to the UC access on every packet transmission. Tak-
ing measurements at two frequency points, we found that
performance is only scaling at approximately 60% of fre-
quency. The VTune™AHA methodology helped us iden-
tify a number of opportunities for additional optimization,
including: elimination of UC accesses, improved memory
copy loops, and data pre-fetch tuning. Incremental opti-
mizations may be possible, but the bottom-line remains that
as CPU speeds go up, the 1Hz/bps no longer holds.

5.2 Receives versus transmits

Maximum throughput (900Mbps, data only) was
achieved quite readily for the larger payload sizes (Fig-
ure 13). It is therefore safe to assume that the NICs are
able to process at line speeds. It is generally accepted
that receive processing is the heavier side [7]. Results at
800MHz showed that such an assumption is true . CPU re-
quirements per byte are generally lesser for transmit than
for receive. However, this is not the case at 2.4GHz (Fig-
ure 13). We believe that one possible explanation is again in
the latency in UC accesses. An update of the “tail pointer”
of the descriptor ring occurs on every successful transmis-
sion of a packet. This results in an un-cacheable access to
memory-mapped 1/0. Though CPU speeds have increased
from 800MHz to 2.4GHz, the bandwidth of un-cacheable
operations remained the same at 100-200MBps (the inter-

GHz/Gbps RX

8
; _
o | F
5 1
]
g4
s | B
2 e
1 [] |
o LES S S
64B 1KB 2KB 16KB 64KB

Transfer Size

E800MHz @2 4GH=z

Figure 12. CPU requirements of network pro-
cessing (RX)

connect between the processor and memory controller hub-
called the P4 bus-operated at a fixed frequency). This points
to the requirement that P4 bus frequencies must increase
proportionately with CPU speeds. The same UC accesses
occur on the receive side, but the update happens only when
receive resources run out, and there is a natural coalescing
on the receive path. As such, I/0 and memory-related laten-
cies are far more pronounced in the transmit path than the
receive path.

5.3 Checksum offload on receives

Many modern NICs support checksum offloads under the
assumption TCP checksumming takes up a substantial part
of the data touching processing [10, 6, 4]. Though check-
sum offload is generally beneficial, Figure 14 shows only
a non-impressive recovery of approximately 10% of CPU
cycles when checksum is offloaded.

The 64B payloads present an interesting case (Fig-
ure 14). CPU utilization is actually larger when using HW
checksum. However, a larger throughput is also achieved.
The expected decrease in CPU utilization is seen only in
the larger payloads. Checksumming is a per byte operation,
and thus has bigger effect on large payloads. Any CPU cy-
cles reduction that can be attained by HW checksumming
is expected to show itself more in the large payloads. How-
ever, there is a more subtle (opposing) behavior at play here,
which is seen only with a Hz/bps performance (Figure 15)
graph. Figure 15 shows gains across all transfer sizes, with
the largest gain in efficiency at the 64B transfers. As we
discussed in section 3, the Linux receive path differs for
small and large payloads. The large transfers exercise the

100.0% ia0m
g 80.00/4 N YRS SRR LR 1 BDO
8 e0.0% {e00
E : a
o K !
S 40.0% A g 1o 2
S
£ 200% ﬂ ﬂ 20

0.0% | ‘ ‘ ‘ ; L,
648 1KB 2KB 16KB 64KB

Transfer size

. CPU Utilization-TX === CPU Utilization-RX
-« & -« Throughput-TX —3¢— Throughput-RX

Figure 13. RX versus TX performances (at
2.4GHz)

integrated csum-copy, while the small transfers exercise the
csum and then copy routines as two separate calls. If the
checksum is offloaded to the NIC, the benefit manifests it-
self more for the small transfers.

Upon further examination of the integrated checksum
routine, we noted the two forms of the operation as shown
below:

csum copy: csum

nov mem - > reg; nov mem -> reg
adcl adcl

nov reg -> nem nov reg -> mem
copy:

nov mem-> nmem

A breakdown of checksum (adcl) versus copy (mov) done
in the csum-copy routine, shows that the copying domi-
nates over the checksum operations by a large margin (90%)
(Figure 16). Such an observation has two implications:
i) that checksumming has been implemented effectively in
the shadow of the copy during the integrated csum-copy in
Linux-2.4.16; ii) that the checksum operation itself requires
minimal cycles. In summary, on new generation processors
where execution bandwidth is plenty, checksum computa-
tions are not the bottleneck. Instead, it is the movement of
data in and out of the processor. Checksumming needs to be
done, preferably in conjunction with the data being moved
from one buffer to another. Basically, performing check-
sums when the data is copied from the socket buffers to
application space incurs minimal extra costs over hardware
checksumming. More importantly, our observations stress
the need for reducing copies (rather than checksumming) as
the more important optimization.

100.00% 1000
5 80.00% ! K 1| a0
8 e0.00% - f6m
] & 8
S 40.00% - ¢ Ldoo E
2 g
£ 20.00% - h ﬂ 200

0.00% ‘ : : ‘ Lo
BB 1KB 2KB 16KB B4KB

Transfer size

mmmm CPU Utilization-SW ——— CPU Utiizationl-HW

<« & - - THroughput-SW —¢— Throughput-HW

Figure 14. SW versus HW checksum (RX):Raw
performance

Hz/bps ratio
O 24 N W e o -,
T S SR N

64B 1KB 2KB 16KB 64KB

Transfer size

Figure 15. SW versus HW checksum (RX):
Hz/bps performance

6 Discussion

Major architectural changes have been proposed to
counter known networking bottlenecks [6, 12], but none has
been commercially successful and still supports TCP. To
reduce kernel overheads, user-level-TCP and other similar
OS-bypass methodologies such the Virtual Interface Archi-
tecture [12] can be employed, and had done so quite suc-
cessfully in localized system networks. Among the soft-
ware “tricks” adopted, the more successful ones include the
use of in-kernel applications and zero-copy transmits. In
kernel applications (e.g. TUX web server) resides in ker-
nel context, and bypasses latencies introduced by context
switches. Their use is limited to a handful of trusted ap-
plications closely tied to the OS. Linux-2.4 implemented a

100

a0

an

m

80

madel
amov

50

40

an

20

; [

RX B4KB TX B4KB

Figure 16. Checksum versus copy (in
csum_and_copy routine)

simple version of zero-copy transmits via sendfile(). Send-
file() makes use of the fact that data needed typically already
resides in the file buffer cache. The file cache therefore dou-
bles as the socket (kernel) buffer, and data is transmitted di-
rectly from these buffers. Without the help of intermediate
socket buffers, the application must now carefully monitor
page memory usage and release. A page of data must be
held as non-usable until the TCP acknowledgements for the
associated data arrive. Apache 2.0 now provides for the use
of sendfile() wherever the OS supports it [5]. Despite send-
file’s limitations, it is one of the easiest and most practical
ways to date of achieving zero-copy on transmits. There is
no easy solution on the receive side. For now, TOES seem
to be the one solution that addresses more of these prob-
lems. Protocol processing is offloaded. TOEs indirectly
achieve zero copy, since any data movement is localized in
the TOE adapter. Data is ultimately DMAed (without CPU
intervention) to the application buffer when the transaction
is deemed complete. As such, TOEs also reduce the inter-
rupt processing requirements by interrupting the host pro-
cessor on a transaction rather than packet granularity. How-
ever, many issues remain. TOES require substantial pro-
cessing hardware and large amounts of onboard memory. In
other words, TOEs simply move the hardware requirements
somewhere else. Kernel overheads can still be substantial
if the OS’s support of TOEs is not implemented well. An
ongoing effort in the IETF [3] looks at remote direct data
placement and aims to define a standard whereby an intelli-
gent adapter can directly place data in the final application
buffers, potentially allowing for true zero copy. To realize
the full benefits of zero copy, sockets operations must essen-
tially be asynchronous in nature. The current BSD-sockets
interface is closely with the way TCP works. It relies on

a copy semantic to/from kernel buffers, and is synchronous
in nature (sleeps on blocks). As we have seen in this study,
many cycles can potentially be wasted in switching between
threads whenever the socket calls are made to wait. In other
words, a new generation of sockets programming interface
must be adopted [2]. Provisions in operating systems must
also be made to support the new sockets paradigm and intel-
ligent offload engines. Applications will have to re-written
to make use of these new constructs.

7 Conclusion and Future Work

We have seen that with CPU speeds going beyond 1
GHz, the 1GHz/Gbps rule may not hold. This is especially
true of small transfer sizes. The non-processing parts are
making a more significant impact on performance as CPU
speeds increase. The need for a balanced system is vital.
In the mean time, new processor technology, such as hyper-
threading that targets fine-grain scheduling [11], will help
us hide memory latency at the system level, and lessen that
gap. Nevertheless, the reality is that network processing
will not scale with CPU speeds. It is doubtful that the in-
cremental offloads seen so far will see us through 10Gbps
speeds. The difficulty in offloading parts of TCP process-
ing lies in the fact that there is no one obvious bottleneck
across different workloads. Modern NICs coalesce receive
interrupts based on some tunable settings. As expected, in-
terrupt coalescing can only be taken so far before response
times are affected. Receive checksum offload will get us at
best 10% improvement (for large transfers) and segmenta-
tion offload [4] is useful again only for large transfers. We
have observed a trend that reverses the view that hosts are
receive-limited and this has various implications. For a web
server, for example, the payload is typically larger on trans-
mits than receives. This observation calls for more attention
to be given to optimizing the transmit path in future imple-
mentations. Despite all the optimizations that had been im-
plemented, the hotspots of TCP processing remain: copies,
interrupt processing, sockets and protocol processing, ker-
nel overheads. Previous studies have not paid much atten-
tion to sockets interface, and we have found that this layer
makes up a large part of TCP processing. For future work,
we plan to investigate the sockets interface. We would
also like to study the newer networking models that use
event queues and the asynchronous paradigm. Ultimately,
a generic asynchronous, zero-copy, TCP-offload paradigm,
fully supported by the operating system and exposed to ap-
plications, will be required. . The challenge lies in living up
all of these expectations, and still maintaining the integrity
of the TCP protocol. For now, true low-cost TCP offload
remains elusive, with good reason.

Acknowledgements

We would like to thank ShuBin Zhao, Ravi lyer and Raed
Kanjo for their expert input on performance counters and
benchmarks. We thank Gary McAlpine and Vinay Awasthi
for their pivotal roles in helping us figure out DMA op-
erations and gigabit Ethernet drivers. We also thank Don
Cameron and the anonymous reviewers for comments and
suggestions on this work.

References

[1] Alacritech SLIC: A Data Path TCP Offload Methodol-
ogy. http://mmw.alacritech.comyhtml/techreview.html.

[2] The Open Group: Sockets APl extension WG.
http: /imww.opengroup.org/icsc/sockets.

[3] Remote Direct Data Placement WG.
http://mvwwiietf.org/html.charter/'rddp-charter.htmil.

[4] High Performance Network Adapters and Drivers in
Windows. http: //mmw.mi crosoft.convhwdec/tech/, De-
cember 2001.

[5] R. Bloom. Filerting 10 in Apache 2.0.
http: /imwww.serverwatch.comvtutorials, September
2000.

[6] J. Chase, A. Gallatin, and K. Yocum. End-System Op-
timizations for High-Speed TCP. IEEE Communica-
tions, Special 1ssue on High-Speed TCP, June 2000.

[7] D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
Analysis of TCP processing overhead. |EEE Commu-
nications, June 1989.

[8] A. Earls. TCP Offload Engines Finally Arrive. Sorage
Magazine, March 2002.

[9] G. Herrin. Linux IP Networking: A
Guide to the Implementation and Mod-
ification of the Linux Protocol Stack.
http: //ker nel newbies.org/documents/ipnetworking/,
May 2000.

[10] J. Kay and J. Pasquale. The Importance of Non-Data
Touching Processing Overheads in TCP/IP. In Pro-
ceedings of ACM SSIGCOMM, 1993.

[11] W. Magro, P. Peterson, and S. Shah. Hyper-Threading
Technology: Impact on Compute-Intensive Work-
loads. Intel Technology Journal, Feb 2002.

[12] G. Regnier and D. Cameron. The VMirtual Interface
Architecture. Intel Press, 2002.

[13] A. Rubini and J. Corbet.
O’reilly, 2001.

Linux Device Drivers.

