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Abstract

There is increasing concern among developers that future 
web servers running commercial workloads may be limited 
by network processing overhead in the CPU as 10Gb ether-
net becomes prevalent. We analyze CPU usage of real hard-
ware running popular commercial workloads, with an 
emphasis on identifying networking overhead. Contrary to 
much popular belief, our experiments show that network pro-
cessing is unlikely to be a problem for workloads that per-
form significant data processing. For the dynamic web 
serving workloads we examine, networking overhead is neg-
ligible (3% or less), and data processing limits performance. 
However, for web servers that serve static content, network-
ing processing can significantly impact performance (up to 
25% of CPU cycles). With an analytical model, we calculate 
the maximum possible improvement in throughput due to 
protocol offload to be 50% for the static web workloads.

1  Introduction
Web servers are fast becoming critical components in the 

infrastructure of large businesses. Companies make signifi-
cant investments to purchase, deploy and maintain these 
servers. To improve their performance, it is important to 
have a good understanding of the workloads these machines 
are likely to run. This knowledge can help identify current 
and future bottlenecks in the system and help direct research.

As the widespread availability of 10 gigabit ethernet 
nears, there is concern among developers that the networking 
stack may prove to be a bottleneck for commercial servers 
running web workloads. This concern is driven by the “1 
Hz/1 bps” rule of thumb, which states that driving a line at 
1bps requires a 1 Hz processor. This processing requirement 
has prompted an increasing amount of interest in network 
protocol offload into hardware [3,6,10,12,15]. 

This paper makes a contribution by providing an under-
standing of where CPU cycles are spent and the amount of 
network communication overhead for some important web 
workloads. By studying the CPU profiles of these workloads 
under a wide variety of loads, we identify both current and 
potential future bottlenecks in systems. In particular, we 
examine the network stack to see if it could be a limiting fac-
tor in terms of CPU overhead. We also use CPU profile data 

as input to an analytical model that bounds the potential ben-
efit of protocol offload. 

We deploy five web workloads (discussed in depth in 
Section 2): two that serve static web content and three that 
serve dynamic web content. The difference in the categories 
is in the amount of data processing done before responding 
to the user. The five workloads represent a broad range of 
applications deployed on the Internet. For our experimental 
methodology (Section 3), we run the workloads on real hard-
ware—systems running the Linux operating system—and 
gather detailed CPU profile information.

Through our experiments (Section 4), we contradict the 
prevalent belief that as raw network performance increases, 
network processing will be the limiting factor for most web 
workloads. For the three dynamic web workloads we exam-
ine, the networking overhead is very small (3% or less of 
CPU cycles). For these workloads, data processing limits 
throughput. If data processing overheads do not reduce in the 
future, network processing optimizations (e.g., protocol off-
load) are unlikely to provide much benefit to this class of 
applications. In contrast, for the two static web workloads, 
there can be significant networking overhead (up to 25% of 
CPU cycles). We confirm and generalize these experimental 
results with a high-level analytical model (Section 5) that 
studies the effectiveness of protocol offload based on certain 
workload characteristics (e.g., ratio of application processing 
to network processing). 

2  Commercial Web Workloads
Modern web servers run a variety of different workloads. 

Some serve simple static HTML documents, others serve 
dynamic content via Java, Perl, CGI, or some other active 
scripting language. Servers employed by commercial enter-
prises often utilize a multi-tier system, which includes Java 
(or .NET) based middleware and a database backend. We 
evaluate five workloads, representing both static web content 
(Section 2.1) and dynamic web content (Section 2.2)

2.1  Static Web Content
In this subsection, we describe two workloads that 

deliver static web content to users. Both workloads use the 
multithreaded version (2.0.40) of the popular open source 
Apache web server. The base configuration is modified to 
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allow over 1000 simultaneous connections. Request logging 
is disabled to reduce server side overhead. This is a common 
procedure to improve performance by reducing disk I/O.

2.1.1  Apache Bench

Apache Bench (AB) is a micro-benchmark that stress 
tests the server installation and does not exercise memory or 
I/O. The program can be configured to set up a number of 
connections to the server and fetch a specified file a given 
number of times. In our experiments, we vary the size of the 
file fetched by AB from a small 509 byte file to a larger 
64KB file. Small files do not require fragmentation, but may 
incur more frequent system calls and interrupts. The large 
files require fragmentation into network packets. In each 
experiment we use 500 clients requesting the same file. 

2.1.2  Apache with Surge

The second static web content workload uses Surge [1] 
as the file and load generator. Surge creates a set of files 
using a zipf distribution to mimic web file sizes [4]. The 
Surge client models several users requesting files from the 
generated set. We use http 1.1, which uses persistent connec-
tions, thus each connection typically requests and receives 
more than one file. 

By controlling the size of the file set generated by Surge, 
we ensure that the memory and I/O system of the target web 
server are exercised. The serving of static web content 
requires little, if any, data processing at the server side. It 
largely involves fetching the file from the I/O system and 
sending it across the network. This is the main distinguishing 
factor between the first two and the remaining workloads.

2.2  Dynamic Web Content
In this subsection, we describe three workloads that 

deliver dynamic web content. The first is based on an exist-
ing system that is very popular on the internet (slashdot.org), 
the second is an industry standard SPEC benchmark run on 
web servers while the third is a Java middleware workload.

2.2.1  Apache with SlashCode

The first dynamic web content workload is formed using 
Apache 1.3.271 with SlashCode [8] 2.2.7. SlashCode is the 
perl source code to the popular slashdot.org website. It uses 
perl scripts to generate dynamic web content from the back-
end database. We use MySQL v8.23 as the database backend 
to store user information, articles, and posts. We use a driver 
program that generates requests for articles from the main 
page of the website. The driver program mimics a number of 
clients accessing the system, and it uses a probabilistic state 
machine to control the next client action (read article, post 
article, respond to poll, etc.). The workload is a good exam-
ple of serving a mix of static and dynamic content, and it is 
similar to the real world setup of the slashdot.org site. 

2.2.2  SPECweb99_SSL

SPECweb99_SSL [11] is the counterpart of the 
SPECweb99 benchmark from SPEC. It tests a web server 
serving a mix of dynamic and static content over an SSL 
connection. SPEC provides a specification that the target 
system must meet (especially for routines that serve the 
dynamic content). Our setup involves the use of a popular 
commercial web server2 that provides C routines for com-
mon CGI operations. This workload differs from the previ-
ous one in two important ways. First, it uses SSL, which 
introduces additional overhead per connection. Second, it 
uses C based routines for generating the dynamic content. 
Since the C code is compiled, its execution will be more effi-
cient than interpreted perl code. The use of a “standard” 
SPEC benchmark enables us to test our configuration with 
published results from SPEC, and it ensures that our system 
setup is similar to commercial systems. The benchmark cli-
ent runs on one or more machines synchronized by a driver 
program. The total number of client threads is evenly distrib-
uted among the client machines. The driver uses a probabi-
listic state machine to determine the action to perform (static 
GET, dynamic GET, or POST). The dynamic content is gen-
erated by a custom ad generator on the server side.

2.2.3  Trade 3

The final workload that we use is IBM’s open source 
Trade 3 [7] benchmark. Trade 3 models an online stock bro-
kerage application. It provides a real world workload that 
utilizes the Enterprise Java Beans v2.0 (EJB) architecture. It 
also uses message driven beans, multi-phase database trans-
actions, and web services. Object persistence is managed by 
the EJB containers. The application server used to run 
Trade3 is IBM’s WebSphere 5.0, and we use IBM DB2 v7.1 
as the database backend. The Trade3 application has a web 
interface that performs a random transaction when refer-
enced. We test the performance of our setup using IBM’s 
Web Performance Tools (WPT).

3  Experimental Goals and Methodology
In this section, we briefly discuss the goals of our experi-

ments and then describe our methodology.

3.1  Experimental Goals
The primary goal of this work is to find current and 

future bottlenecks in web workloads. To achieve this high-
level goal, we examine three aspects of the system.

First, we look at the total (user+kernel) CPU profile. This 
gives us an idea of where the system spends most of its time 
when running the current workload. It shows whether the 
system is spending more time running the application or the 
operating system kernel. Second, we examine the code seg-
ments in which the system spends the longest amount of 

1.  Slash does not support Apache 2.0.40’s version of mod_perl yet. 2.  The web server remains unnamed for licensing reasons.
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time. If it is in the application, it is important that we know 
the exact tasks the application performs. If the system spends 
most of the time in the kernel, we note the code segments 
where time is spent within the kernel and understand why 
time is being spent there. Third, we look for code segments 
that could form the bottleneck if the primary bottleneck is 
removed. For example, what if network processing is no 
longer a bottleneck?

3.2  Methodology
Choosing a methodology and target system for our 

experiments involved some trade-offs. We wanted to run real 
workloads for a significant amount of time and we wanted to 
avoid making simplifying assumptions about the target sys-
tem, which precluded the use of simulation. We thus chose to 
use real hardware, with the obvious limitation that it cannot 
be configured to emulate an arbitrary number of possible tar-
get systems. Since comparing results across platforms is 
problematic, we chose a single, prevalent platform: Intel pro-
cessors and the Linux operating system.

Our experimental setup consists of four machines con-
nected by a Cisco Catalyst switch with gigabit ethernet links. 
The main system under test is a 1.4GHz Pentium III, with 
1GB of RAM. All server software, including databases 
where applicable, executes on this machine. Client driver 
software executes on one or more of the other machines. One 
of the driver machines is a 2.2 GHz Pentium 4 with 2GB of 
RAM. The other two are 1.4GHz Pentium III’s with 512MB 
RAM. The P4 system was not chosen as the main system 
under test due to incompatibility with some of our tools. All 
four machines run Debian Linux, with the 2.4 series kernels. 
All the machines have local SCSI disks, but the workloads 
run off an NFS file system. To gather CPU profile data, we 
used the Intel® VTune™ profiling tool. VTune uses proces-
sor performance counters to gather CPU profiling data. 

We also tested three of our workloads on a multiproces-
sor system. For these tests, we used an SMP-enabled version 
of kernel version 2.4.20. The SMP system had dual P-III’s 
running at 1GHz. The results (not shown due to space limita-
tions) were similar to uniprocessor results, except for sched-
uling overhead. The dual processor SMP version of the 
kernel is known to have problems, and we saw these prob-
lems manifested as higher scheduling overheads. 

All the workloads are warmed up before collecting CPU 
profile data. Table 1 lists the duration that each workload 
runs. CPU profile data is collected over a period of 20 sec-
onds, with 20 seconds of calibration preceding the data col-
lection. For all workloads, the data we present is the 
arithmetic mean over three runs. VTune has two components 
for profiling linux machines. The main VTune analyzer pro-
gram runs on a remote windows machine. This communi-
cates with the target system under test through the VTune 
Server. Data is gathered on the target system using a kernel 
loadable module. Since the analyzer itself does not run on 

the target system, interference due to measurement is mini-
mized. The VTune server adds a small amount of overhead 
which is reported in the profiling data.

4  Results and Analysis
This section describes our experiments and results in 

detail. We divide our discussion into two sections by work-
load type: static web and dynamic web. We provide a sum-
mary of the results in Section 4.3.

For all the workloads, we gather detailed CPU profile 
information. This information includes code segment names 
and the amount of CPU time spent within them. The code 
segments are divided into different categories, some of 
which are common across all workloads. We provide a brief 
explanation of the various category names reported in the 
CPU profile in Table 2. 

4.1  Static Web Workloads
In this section, we describe the results of our experiments 

on AB and Surge.

4.1.1  Apache Bench

AB is the smallest of our workloads. We configure it to 
request the same file at least 100,000 times, with the requests 
distributed evenly among 500 client threads. We vary the file 
size to study its effect on the CPU profile as well as the 
throughput achieved. 

Table 3 shows the results of AB for three file sizes. We 
see that increasing the file size increases the bandwidth utili-
zation, but decreases the requests per second satisfied by the 
server. The bandwidth increases by 5x, but the throughput, in 
terms of requests per second, drops by a factor of 3. The 
increase in bandwidth is mainly because the larger files can 
better utilize the bandwidth of the network per request. 

Figure 1 shows the user and kernel CPU profile and 
Figure 2 shows the zoomed in profile for the linux kernel. 
From Figure 1, we see that the benchmark regularly saturates 
the CPU on the server (no idle time). The most significant 
CPU fractions are due to the linux kernel, vmlinux (>40%), 
and apache httpd (>10%). Other significant fractions are due 
to the NIC driver, e1000, and the various libraries. Any cate-
gory contributing less than 1% is grouped into “Misc.” 
Within the kernel itself (Figure 2), the networking code 
occupies the largest fraction, varying from around 15% (for 

Workload Duration

ApacheBench >100,000 requests

Surge/Apache 120 seconds

Slash/Apache ≥   500 object requests

SPECweb99_SSL > 4 minutes

Trade3 200 seconds

TABLE 1. Workload Test Durations
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the 509B file size) to almost 30% (for 64KB files) of total 
CPU time. The increase in networking overhead is due to the 
larger quantities of data being handled. In case of the 509B 
file, TCP bundles multiple packets together to fit into an eth-
ernet packet. In case of the 64K file, the networking layer has 
to deal with fragmentation in addition to regular tasks. The 
large task scheduling overhead is because of the number of 
threads the web server spawns to deal with the incoming 
requests.

Summary. From the experiments, we see that the two fac-
tors that limit throughput for AB are the scheduling overhead 
(up to 25%) and network stack overhead (up to 25%). 

4.1.2  Surge and Apache

This workload is setup by having Surge generate a 
480MB file set (20000 files) using a zipf distribution. The 
parameters for the zipf distribution unmodified from their 

default values in Surge. The smallest file is 75 bytes, and the 
largest file is 6MB. The web document root resides on an 
800MHz Pentium III, 1.7TB NFS server with RAID-5. The 
client program is configured to run for at least 2 minutes. 

We vary the number of client threads from 25 to 500. 
Figure 3 shows the throughput and latency of the web server 
as a function of the number of clients. As the number of cli-
ents is increased, the time taken to service requests also 
increases. Throughput continues to increase with the number 
of clients, up until 200 clients. After that, the server saturates 
and the throughput decreases. We see a drop in the through-
put and a rise in response time beyond 400 clients.

We examine the CPU profile of this workload to explain 
the throughput behavior. From the CPU profile (Figure 4) we 
see that as we increase the number of clients from 25 to 50, 
we see a big jump in the kernel overhead. Beyond that, the 

Category Explanation

vmlinux Linux kernel

e1000 Intel E1000 Device Driver

bcm5700 Broadcom Gigabit NIC Driver

Libraries Various libraries, including libc (no Java)

Idle “Default Idle” routine

libjvm Java libraries, libjvm, libjava, libjitc

Misc Routines that use <1% total CPU cycles

httpd Apache web server

Appserver WebSphere 5.0

sunrpc Sun RPC routines

nfs Network File Service routines

TABLE 2. CPU Profile: Categories
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File Size Total Time Req/Sec Throughput (Mbps) Time per request (ms) Requests

509 B 46.96s 4258.94 26.88 117.4 200,000

4KB 47.82s 4182.26 143.6 119.6 200,000

64KB 69.97s 1429.29 720.0 349.8 100,000

TABLE 3. Apache Bench: Client Side Run Results
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kernel overhead is almost constant. As we increase the num-
ber of clients, idle time drops (0% at 50+ clients), and web 
server and scheduling overhead increases. As the system sat-
urates, throughput drops and latency increases. Figure 5
shows the breakdown within the linux kernel, where net-
working overhead remains the largest fraction. The network 
overhead increases as the number of clients increases from 
25 to 50 then plateaus at 20% of overall CPU cycles.

Summary. For Surge, we find that the largest overhead is 
due to the networking stack (20% total CPU cycles), and that 
the Apache web server consumes a large fraction (~15% 
core + 25% of libraries) of the CPU.

4.2  Dynamic Web Workloads
In this section, we examine the results of our experiments 

on the dynamic web workloads. We analyze results from 
SPECweb, SlashCode and Trade3.

4.2.1  SlashCode

After performing a regular install of slashcode, we popu-
late its database with random entries using tools provided in 
the distribution. In each run, we keep the number of objects 
fetched constant (500). Each object consists of multiple files 
(images, data). We start the test with a single user (and 500 
requests), and increase the number of users to 50 (with 10 
requests). Each test takes on the order of a minute. In all 
cases, the system is warmed up by running the site and the 
driver for 2000 requests. Figure 6 shows the throughput as a 
function of the number of clients. 

We see that the throughput increases as we add more 
users, until the server saturates and then it decreases. The 
explanation can be found by examining the CPU profile 
graph (Figure 7) which shows decreasing idle time with 
increasing users. One important difference between this 
workload and the previous two is the fact that the dominant 
overhead is not the linux kernel. In fact, the kernel utilizes 
less than 5% of the CPU in all cases. Most of the overhead is 

due to perl processing within apache. This can be seen by 
examining a breakdown of httpd, where 75% or more time is 
spent in perl processing. There is little communication over-
head, which is expected for such low throughput (~2Mbps). 

Summary. The main factor limiting throughput for Slash-
Code is perl processing (up to 56% of total CPU time). The 
networking overhead is almost negligible. Thus, we expect 
little benefit for this workload through protocol offload. The 
largest benefit would be through optimized perl processing.
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4.2.2  SPECweb99_SSL 

SPECweb99_SSL uses a file generator to create its file 
set. This utility creates a large number of directories, each 
being about 5MB. The number of directories depends on the 
load to be applied during the benchmark run. A load of 500 
(simultaneous connections) generates a 1.5GB file set. 

For most data gathering runs, we run the benchmark for 4 
minutes with 40 seconds of warm-up. We also do a full 
SPEC run to ensure that we have a reasonable configuration 
competitive with previously submitted SPEC results. A stan-
dard SPEC run must satisfy some requirements, including a 
minimum warm-up time, a minimum number of runs, a min-
imum bandwidth reported by all clients, and a maximum 
number of errors per client. We gather data for 50 to 350 
simultaneous connections. Without tuning, we perform a 
SPEC compliant run (unpublished) with 225 connections. 

Figure 8 shows the average time per request over all con-
nections. There is little increase in the latency of the system 
until we have 250 clients. After that, we see a sharp rise in 
the latency. This happens as the system saturates. Figure 9
shows the CPU profile for specweb. We see that for 50 cli-
ents, the server has plenty of idle time (80%). As we increase 

the number of clients, the idle time drops quickly. It never 
reaches zero because of issues on the client side. We are able 
to saturate the machine if running a non-specweb driver. We 
see more kernel overhead here compared to SlashCode. 
Other than this, the two results are similar, with the web 
server consuming the largest fraction.

Summary. SPECweb overheads are dominated by the web 
server (~50% of CPU time) that generates dynamic content 
by executing cgi scripts. Network stack overhead is low and 
thus we expect little benefit from protocol offload.

4.2.3  Trade3

Trade3 is a Java middleware workload that models an 
online stock brokerage application. The Trade3 database is 
populated with 500 users, each of whom owns a set of shares 
and trades them through the application. Trade3 includes a 
servlet which performs a random trade when invoked. Thus, 
by repeated invocations of this servlet, we simulate a server 
running a multi-tier system for trading stocks. We vary the 
number of clients connecting to the server from 2 to 40.

The results, shown inFigure 10, show that the server can 
handle a relatively constant number of requests per second, 
but increasing the number of clients increases the latency per 
request. Once we reach 40 clients, the number of pages 
served per second drops. If we examine the CPU profile in 
Figure 11, we see that most of the overhead is due to the 
application server and Java libraries. The linux kernel occu-
pies less than 10% of total CPU cycles. 

Summary. Trade3 is another dynamic web workload with 
low network overhead. CPU time is dominated by Java pro-
cessing (~25%) and the application server (~30%). We again 
expect little benefit from protocol offload.

4.3  Results Summary
Our experiments show that, for static web workloads, 

there is significant overhead due to thread management (up 
to 25%) and the network stack (up to 30%). For dynamic 
web workloads, however, the data processing time dominates 
all other tasks. The throughput of the these workloads(~10 
Mbps) is much lower than the static web workloads 
(~100Mbps). To improve throughput for these workloads, 
we must target the primary bottlenecks.

To reduce data processing overheads, we can try and 
optimize the code that performs the data processing, or opti-
mize the compiler/interpreter used to run that code. To 
reduce the network stack overhead, we can offload the proto-
col stack into hardware. This would reduce CPU load.

5  Analytical Model
In this section, we present an analysis of the potential 

benefits of protocol offload for our workloads using a high-
level analytical model developed by Shivam and Chase [9]. 
This model uses four ratios—lag ratio, application ratio, wire 
ratio, and structural ratio—to identify system bottlenecks 
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and estimate the benefits of protocol offload. Table 4
describes these ratios. For the purposes of this work, the 
application ratio is most important.

The application ratio (γ) is the ratio of normalized appli-
cation processing to communication processing. To calculate 
the application ratio, the model needs two input parameters, 
the CPU occupancy for communication overhead per unit of 
bandwidth, normalized to a reference host (o), and the CPU 
occupancy for application processing per unit of bandwidth 
normalized to a reference host (a). Thus, γ=a/o. For the rest 
of this discussion, we assume that the remaining ratios (α, β, 
σ) are 1. This implies that the NIC is not the bottleneck. We 
make this assumption as we are targeting future network 
hardware with plentiful bandwidth.

The application ratio puts a limit on the maximum possi-
ble benefits that could be derived by protocol offload in an 
ideal case. The maximum benefit achievable is a doubling of 
throughput, when γ=1. This is limited by p/(γ-p+1), where p 
is the fraction of network overhead that can be off-loaded to 
the NIC. If we assume p=1 (ideal case), then the maximum 

benefit is bounded by 1/γ. This assumes that the network 
card is itself not limited in any way due to the protocol pro-
cessing that it now has to perform (since all other ratios are 
assumed to be 1).

We now examine our applications to see how much each 
could possibly benefit by protocol offload. The results pre-
sented do not reflect on the larger scope of protocol offload, 
but are applicable to servers running similar workloads.

5.1  Results
We now look at the results obtained for the three types of 

workloads. We expect maximum benefits for workloads that 
perform little data processing. Table 5 summarizes the 
results from the analytical model.

Static Web Content. The results for static web content 
workloads revel a significant fraction of network processing 
overhead. In the case of AB, the network stack occupies at 
most 27% of CPU cycles. In addition, the NIC driver occu-
pies an additional 7%, making it a total of 34% network pro-
cessing overhead. Assuming an ideal scenario in which all 
this overhead could be off-loaded, the maximum improve-
ment achievable is 1/γ. In reality, there would still be some 
interfacing overhead. Here, γ is 1.95. Thus, the maximum 
increase we would see in throughput in the case of ideal pro-
tocol offload is 52%. For Surge and Apache, the network 
stack occupies at most 20% of CPU cycles, and the NIC 
driver occupies a further 5.6%. This gives a γ of 3, which 
bounds the maximum increase in throughput at 34.5%.

Dynamic Web Content. In the dynamic content workloads, 
network stack processing overhead is small. For slashcode, 
the total overhead is at most 1%, giving a total possible ben-
efit of 1%. For SPECweb, the overhead is higher, at 6.5% 
leading to a potential peak benefit of 7%. 

Trade3. The result for Trade3 is similar. The total network-
ing overhead is at most 4%, which leads to a maximum 
increase in throughput of 4%.
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Ratio Explanation

Lag (α) Ratio of Processor to NIC speed

Application (γ) Ratio of normalized application processing to com-
munication processing

Wire (σ) Fraction of network bandwidth NIC can achieve

Structural (β) Fraction of networking overhead off-loaded to NIC

TABLE 4. Model Ratios

Workload Network 
Overhead

Gamma 
(γ)

Max Improvement 
in Throughput

AB 34% 1.95 52%

Surge 25.6% 3 34.5%

SlashCode 1% 99 1%

SPECweb 6.5% 14 7%

Trade3 4% 24 4%

TABLE 5. Benefits of Protocol Offload
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5.2  Conclusions from Model
Results from the analytical model show that protocol off-

load can potentially improve throughput, but only for appli-
cations in which networking overhead occupies a significant 
fraction of CPU cycles. For our static web workloads, the 
model predicts up to a 50% improvement in throughput if we 
use protocol offload. However, most assumptions made by 
the model are optimistic in favor of protocol offload. Due to 
interfacing overheads, the actual benefits are likely to be 
lower that those predicted by the model. This precludes 
improvements that would take place if the data processing 
overheads were to reduce.

Consider the significant perl processing overhead in 
SlashCode. Assume reducing the perl overhead by 50% 
translates directly to an improvement in bandwidth utiliza-
tion (i.e., all CPU cycles freed by perl are taken up by the 
network stack). In this scenario, offloading the network stack 
to hardware could achieve a 62.5% improvement in through-
put, compared to 1% without the improved perl processing.

6  Related Work
Extensive prior work has examined commercial work-

loads. We focus here on analyses that explore network pro-
cessing. Researchers have proactively pursued protocol 
offload [3,6,10,12,15], as well as its feasibility, in anticipa-
tion of increased network bandwidth. Recent work has also 
analyzed the TCP stack in modern linux kernels and re-vali-
dated the old “1 Hz/1bps” rule of thumb for TCP/IP process-
ing [5]. Other researchers have examined techniques to 
reduce data movement overhead by caching data on the net-
work interface [13,14]. Binkert et al. [2] present a full system 
simulator targeted at network intensive applications and 
examine the memory system behavior of SPECweb99. Our 
work differs from the above studies by examining a broad 
class of workloads that includes sophisticated commercial 
workloads with significant data processing requirements.

7  Conclusions
To improve the performance of web servers, it is impor-

tant that we understand the workloads they run. This paper 
presents an analysis of commercial web workloads in terms 
of their CPU profile and networking overheads. We show 
that, except for static web content serving, CPU usage is 
dominated by data processing overheads for generating 
dynamic content. Thus, if data processing overheads do not 
reduce in the future, protocol offload is unlikely to provide 
much benefit to this class of applications. However, for 
workloads that only serve data, the overhead due to the net-
work stack can be significant. For static web content serving 
workloads, this can be as high as 50%. Protocol offload may 
provide significant benefits to similar workloads, such as 
storage area networks.
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