
Communication Breakdown: Analyzing CPU Usage in Commercial Web
Workloads

Jaidev P. Patwardhan†, Alvin R. Lebeck†, and Daniel J. Sorin‡

{jaidev,alvy}@cs.duke.edu, sorin@ee.duke.edu.
†Department of Computer Science ‡Department of Electrical and Computer Engineering

Duke University Duke University
Durham, NC 27708 Durham, NC 27708

Appears in the Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software
Austin, Texas, March 10-12, 2004
Abstract

There is increasing concern among developers that future
web servers running commercial workloads may be limited
by network processing overhead in the CPU as 10Gb ether-
net becomes prevalent. We analyze CPU usage of real hard-
ware running popular commercial workloads, with an
emphasis on identifying networking overhead. Contrary to
much popular belief, our experiments show that network pro-
cessing is unlikely to be a problem for workloads that per-
form significant data processing. For the dynamic web
serving workloads we examine, networking overhead is neg-
ligible (3% or less), and data processing limits performance.
However, for web servers that serve static content, network-
ing processing can significantly impact performance (up to
25% of CPU cycles). With an analytical model, we calculate
the maximum possible improvement in throughput due to
protocol offload to be 50% for the static web workloads.

1 Introduction
Web servers are fast becoming critical components in the

infrastructure of large businesses. Companies make signifi-
cant investments to purchase, deploy and maintain these
servers. To improve their performance, it is important to
have a good understanding of the workloads these machines
are likely to run. This knowledge can help identify current
and future bottlenecks in the system and help direct research.

As the widespread availability of 10 gigabit ethernet
nears, there is concern among developers that the networking
stack may prove to be a bottleneck for commercial servers
running web workloads. This concern is driven by the “1
Hz/1 bps” rule of thumb, which states that driving a line at
1bps requires a 1 Hz processor. This processing requirement
has prompted an increasing amount of interest in network
protocol offload into hardware [3,6,10,12,15].

This paper makes a contribution by providing an under-
standing of where CPU cycles are spent and the amount of
network communication overhead for some important web
workloads. By studying the CPU profiles of these workloads
under a wide variety of loads, we identify both current and
potential future bottlenecks in systems. In particular, we
examine the network stack to see if it could be a limiting fac-
tor in terms of CPU overhead. We also use CPU profile data

as input to an analytical model that bounds the potential ben-
efit of protocol offload.

We deploy five web workloads (discussed in depth in
Section 2): two that serve static web content and three that
serve dynamic web content. The difference in the categories
is in the amount of data processing done before responding
to the user. The five workloads represent a broad range of
applications deployed on the Internet. For our experimental
methodology (Section 3), we run the workloads on real hard-
ware—systems running the Linux operating system—and
gather detailed CPU profile information.

Through our experiments (Section 4), we contradict the
prevalent belief that as raw network performance increases,
network processing will be the limiting factor for most web
workloads. For the three dynamic web workloads we exam-
ine, the networking overhead is very small (3% or less of
CPU cycles). For these workloads, data processing limits
throughput. If data processing overheads do not reduce in the
future, network processing optimizations (e.g., protocol off-
load) are unlikely to provide much benefit to this class of
applications. In contrast, for the two static web workloads,
there can be significant networking overhead (up to 25% of
CPU cycles). We confirm and generalize these experimental
results with a high-level analytical model (Section 5) that
studies the effectiveness of protocol offload based on certain
workload characteristics (e.g., ratio of application processing
to network processing).

2 Commercial Web Workloads
Modern web servers run a variety of different workloads.

Some serve simple static HTML documents, others serve
dynamic content via Java, Perl, CGI, or some other active
scripting language. Servers employed by commercial enter-
prises often utilize a multi-tier system, which includes Java
(or .NET) based middleware and a database backend. We
evaluate five workloads, representing both static web content
(Section 2.1) and dynamic web content (Section 2.2)

2.1 Static Web Content
In this subsection, we describe two workloads that

deliver static web content to users. Both workloads use the
multithreaded version (2.0.40) of the popular open source
Apache web server. The base configuration is modified to
1

allow over 1000 simultaneous connections. Request logging
is disabled to reduce server side overhead. This is a common
procedure to improve performance by reducing disk I/O.

2.1.1 Apache Bench

Apache Bench (AB) is a micro-benchmark that stress
tests the server installation and does not exercise memory or
I/O. The program can be configured to set up a number of
connections to the server and fetch a specified file a given
number of times. In our experiments, we vary the size of the
file fetched by AB from a small 509 byte file to a larger
64KB file. Small files do not require fragmentation, but may
incur more frequent system calls and interrupts. The large
files require fragmentation into network packets. In each
experiment we use 500 clients requesting the same file.

2.1.2 Apache with Surge

The second static web content workload uses Surge [1]
as the file and load generator. Surge creates a set of files
using a zipf distribution to mimic web file sizes [4]. The
Surge client models several users requesting files from the
generated set. We use http 1.1, which uses persistent connec-
tions, thus each connection typically requests and receives
more than one file.

By controlling the size of the file set generated by Surge,
we ensure that the memory and I/O system of the target web
server are exercised. The serving of static web content
requires little, if any, data processing at the server side. It
largely involves fetching the file from the I/O system and
sending it across the network. This is the main distinguishing
factor between the first two and the remaining workloads.

2.2 Dynamic Web Content
In this subsection, we describe three workloads that

deliver dynamic web content. The first is based on an exist-
ing system that is very popular on the internet (slashdot.org),
the second is an industry standard SPEC benchmark run on
web servers while the third is a Java middleware workload.

2.2.1 Apache with SlashCode

The first dynamic web content workload is formed using
Apache 1.3.271 with SlashCode [8] 2.2.7. SlashCode is the
perl source code to the popular slashdot.org website. It uses
perl scripts to generate dynamic web content from the back-
end database. We use MySQL v8.23 as the database backend
to store user information, articles, and posts. We use a driver
program that generates requests for articles from the main
page of the website. The driver program mimics a number of
clients accessing the system, and it uses a probabilistic state
machine to control the next client action (read article, post
article, respond to poll, etc.). The workload is a good exam-
ple of serving a mix of static and dynamic content, and it is
similar to the real world setup of the slashdot.org site.

2.2.2 SPECweb99_SSL

SPECweb99_SSL [11] is the counterpart of the
SPECweb99 benchmark from SPEC. It tests a web server
serving a mix of dynamic and static content over an SSL
connection. SPEC provides a specification that the target
system must meet (especially for routines that serve the
dynamic content). Our setup involves the use of a popular
commercial web server2 that provides C routines for com-
mon CGI operations. This workload differs from the previ-
ous one in two important ways. First, it uses SSL, which
introduces additional overhead per connection. Second, it
uses C based routines for generating the dynamic content.
Since the C code is compiled, its execution will be more effi-
cient than interpreted perl code. The use of a “standard”
SPEC benchmark enables us to test our configuration with
published results from SPEC, and it ensures that our system
setup is similar to commercial systems. The benchmark cli-
ent runs on one or more machines synchronized by a driver
program. The total number of client threads is evenly distrib-
uted among the client machines. The driver uses a probabi-
listic state machine to determine the action to perform (static
GET, dynamic GET, or POST). The dynamic content is gen-
erated by a custom ad generator on the server side.

2.2.3 Trade 3

The final workload that we use is IBM’s open source
Trade 3 [7] benchmark. Trade 3 models an online stock bro-
kerage application. It provides a real world workload that
utilizes the Enterprise Java Beans v2.0 (EJB) architecture. It
also uses message driven beans, multi-phase database trans-
actions, and web services. Object persistence is managed by
the EJB containers. The application server used to run
Trade3 is IBM’s WebSphere 5.0, and we use IBM DB2 v7.1
as the database backend. The Trade3 application has a web
interface that performs a random transaction when refer-
enced. We test the performance of our setup using IBM’s
Web Performance Tools (WPT).

3 Experimental Goals and Methodology
In this section, we briefly discuss the goals of our experi-

ments and then describe our methodology.

3.1 Experimental Goals
The primary goal of this work is to find current and

future bottlenecks in web workloads. To achieve this high-
level goal, we examine three aspects of the system.

First, we look at the total (user+kernel) CPU profile. This
gives us an idea of where the system spends most of its time
when running the current workload. It shows whether the
system is spending more time running the application or the
operating system kernel. Second, we examine the code seg-
ments in which the system spends the longest amount of

1. Slash does not support Apache 2.0.40’s version of mod_perl yet. 2. The web server remains unnamed for licensing reasons.
2

time. If it is in the application, it is important that we know
the exact tasks the application performs. If the system spends
most of the time in the kernel, we note the code segments
where time is spent within the kernel and understand why
time is being spent there. Third, we look for code segments
that could form the bottleneck if the primary bottleneck is
removed. For example, what if network processing is no
longer a bottleneck?

3.2 Methodology
Choosing a methodology and target system for our

experiments involved some trade-offs. We wanted to run real
workloads for a significant amount of time and we wanted to
avoid making simplifying assumptions about the target sys-
tem, which precluded the use of simulation. We thus chose to
use real hardware, with the obvious limitation that it cannot
be configured to emulate an arbitrary number of possible tar-
get systems. Since comparing results across platforms is
problematic, we chose a single, prevalent platform: Intel pro-
cessors and the Linux operating system.

Our experimental setup consists of four machines con-
nected by a Cisco Catalyst switch with gigabit ethernet links.
The main system under test is a 1.4GHz Pentium III, with
1GB of RAM. All server software, including databases
where applicable, executes on this machine. Client driver
software executes on one or more of the other machines. One
of the driver machines is a 2.2 GHz Pentium 4 with 2GB of
RAM. The other two are 1.4GHz Pentium III’s with 512MB
RAM. The P4 system was not chosen as the main system
under test due to incompatibility with some of our tools. All
four machines run Debian Linux, with the 2.4 series kernels.
All the machines have local SCSI disks, but the workloads
run off an NFS file system. To gather CPU profile data, we
used the Intel® VTune™ profiling tool. VTune uses proces-
sor performance counters to gather CPU profiling data.

We also tested three of our workloads on a multiproces-
sor system. For these tests, we used an SMP-enabled version
of kernel version 2.4.20. The SMP system had dual P-III’s
running at 1GHz. The results (not shown due to space limita-
tions) were similar to uniprocessor results, except for sched-
uling overhead. The dual processor SMP version of the
kernel is known to have problems, and we saw these prob-
lems manifested as higher scheduling overheads.

All the workloads are warmed up before collecting CPU
profile data. Table 1 lists the duration that each workload
runs. CPU profile data is collected over a period of 20 sec-
onds, with 20 seconds of calibration preceding the data col-
lection. For all workloads, the data we present is the
arithmetic mean over three runs. VTune has two components
for profiling linux machines. The main VTune analyzer pro-
gram runs on a remote windows machine. This communi-
cates with the target system under test through the VTune
Server. Data is gathered on the target system using a kernel
loadable module. Since the analyzer itself does not run on

the target system, interference due to measurement is mini-
mized. The VTune server adds a small amount of overhead
which is reported in the profiling data.

4 Results and Analysis
This section describes our experiments and results in

detail. We divide our discussion into two sections by work-
load type: static web and dynamic web. We provide a sum-
mary of the results in Section 4.3.

For all the workloads, we gather detailed CPU profile
information. This information includes code segment names
and the amount of CPU time spent within them. The code
segments are divided into different categories, some of
which are common across all workloads. We provide a brief
explanation of the various category names reported in the
CPU profile in Table 2.

4.1 Static Web Workloads
In this section, we describe the results of our experiments

on AB and Surge.

4.1.1 Apache Bench

AB is the smallest of our workloads. We configure it to
request the same file at least 100,000 times, with the requests
distributed evenly among 500 client threads. We vary the file
size to study its effect on the CPU profile as well as the
throughput achieved.

Table 3 shows the results of AB for three file sizes. We
see that increasing the file size increases the bandwidth utili-
zation, but decreases the requests per second satisfied by the
server. The bandwidth increases by 5x, but the throughput, in
terms of requests per second, drops by a factor of 3. The
increase in bandwidth is mainly because the larger files can
better utilize the bandwidth of the network per request.

Figure 1 shows the user and kernel CPU profile and
Figure 2 shows the zoomed in profile for the linux kernel.
From Figure 1, we see that the benchmark regularly saturates
the CPU on the server (no idle time). The most significant
CPU fractions are due to the linux kernel, vmlinux (>40%),
and apache httpd (>10%). Other significant fractions are due
to the NIC driver, e1000, and the various libraries. Any cate-
gory contributing less than 1% is grouped into “Misc.”
Within the kernel itself (Figure 2), the networking code
occupies the largest fraction, varying from around 15% (for

Workload Duration

ApacheBench >100,000 requests

Surge/Apache 120 seconds

Slash/Apache ≥ 500 object requests

SPECweb99_SSL > 4 minutes

Trade3 200 seconds

TABLE 1. Workload Test Durations
3

the 509B file size) to almost 30% (for 64KB files) of total
CPU time. The increase in networking overhead is due to the
larger quantities of data being handled. In case of the 509B
file, TCP bundles multiple packets together to fit into an eth-
ernet packet. In case of the 64K file, the networking layer has
to deal with fragmentation in addition to regular tasks. The
large task scheduling overhead is because of the number of
threads the web server spawns to deal with the incoming
requests.

Summary. From the experiments, we see that the two fac-
tors that limit throughput for AB are the scheduling overhead
(up to 25%) and network stack overhead (up to 25%).

4.1.2 Surge and Apache

This workload is setup by having Surge generate a
480MB file set (20000 files) using a zipf distribution. The
parameters for the zipf distribution unmodified from their

default values in Surge. The smallest file is 75 bytes, and the
largest file is 6MB. The web document root resides on an
800MHz Pentium III, 1.7TB NFS server with RAID-5. The
client program is configured to run for at least 2 minutes.

We vary the number of client threads from 25 to 500.
Figure 3 shows the throughput and latency of the web server
as a function of the number of clients. As the number of cli-
ents is increased, the time taken to service requests also
increases. Throughput continues to increase with the number
of clients, up until 200 clients. After that, the server saturates
and the throughput decreases. We see a drop in the through-
put and a rise in response time beyond 400 clients.

We examine the CPU profile of this workload to explain
the throughput behavior. From the CPU profile (Figure 4) we
see that as we increase the number of clients from 25 to 50,
we see a big jump in the kernel overhead. Beyond that, the

Category Explanation

vmlinux Linux kernel

e1000 Intel E1000 Device Driver

bcm5700 Broadcom Gigabit NIC Driver

Libraries Various libraries, including libc (no Java)

Idle “Default Idle” routine

libjvm Java libraries, libjvm, libjava, libjitc

Misc Routines that use <1% total CPU cycles

httpd Apache web server

Appserver WebSphere 5.0

sunrpc Sun RPC routines

nfs Network File Service routines

TABLE 2. CPU Profile: Categories

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (G

ET
/s

ec
)

Number of Clients

Latency
Throughput

FIGURE 3. Surge: Throughput & Latency vs. # Clients

509 4k 64k
File Size

0

20

40

60

80

100

CP
U

Ut
ili

za
tio

n Misc

Libraries

e1000

httpd

vmlinux

FIGURE 1. AB: CPU Utilization (Total)
509 4k 64k

File Size

0

20

40

60

80

C
PU

 U
til

iz
at

io
n

Assembly

Kernel Library

x86_specific

Memory Management

Inline Code

File System

Scheduler

Network Code

Core Kernel Code

FIGURE 2. AB: CPU Utilization (Kernel)

File Size Total Time Req/Sec Throughput (Mbps) Time per request (ms) Requests

509 B 46.96s 4258.94 26.88 117.4 200,000

4KB 47.82s 4182.26 143.6 119.6 200,000

64KB 69.97s 1429.29 720.0 349.8 100,000

TABLE 3. Apache Bench: Client Side Run Results
4

kernel overhead is almost constant. As we increase the num-
ber of clients, idle time drops (0% at 50+ clients), and web
server and scheduling overhead increases. As the system sat-
urates, throughput drops and latency increases. Figure 5
shows the breakdown within the linux kernel, where net-
working overhead remains the largest fraction. The network
overhead increases as the number of clients increases from
25 to 50 then plateaus at 20% of overall CPU cycles.

Summary. For Surge, we find that the largest overhead is
due to the networking stack (20% total CPU cycles), and that
the Apache web server consumes a large fraction (~15%
core + 25% of libraries) of the CPU.

4.2 Dynamic Web Workloads
In this section, we examine the results of our experiments

on the dynamic web workloads. We analyze results from
SPECweb, SlashCode and Trade3.

4.2.1 SlashCode

After performing a regular install of slashcode, we popu-
late its database with random entries using tools provided in
the distribution. In each run, we keep the number of objects
fetched constant (500). Each object consists of multiple files
(images, data). We start the test with a single user (and 500
requests), and increase the number of users to 50 (with 10
requests). Each test takes on the order of a minute. In all
cases, the system is warmed up by running the site and the
driver for 2000 requests. Figure 6 shows the throughput as a
function of the number of clients.

We see that the throughput increases as we add more
users, until the server saturates and then it decreases. The
explanation can be found by examining the CPU profile
graph (Figure 7) which shows decreasing idle time with
increasing users. One important difference between this
workload and the previous two is the fact that the dominant
overhead is not the linux kernel. In fact, the kernel utilizes
less than 5% of the CPU in all cases. Most of the overhead is

due to perl processing within apache. This can be seen by
examining a breakdown of httpd, where 75% or more time is
spent in perl processing. There is little communication over-
head, which is expected for such low throughput (~2Mbps).

Summary. The main factor limiting throughput for Slash-
Code is perl processing (up to 56% of total CPU time). The
networking overhead is almost negligible. Thus, we expect
little benefit for this workload through protocol offload. The
largest benefit would be through optimized perl processing.

25 50 100 200 400 500
Number of Clients

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

nfs

Idle

Misc

Libraries

e1000

httpd

vmlinux

25 50 100 200 400 500
Number of Clients

0

20

40

60

C
PU

 U
til

iz
at

io
n

Assembly

Kernel Library

x86_specific

Memory Management

Inline Code

File System

Scheduler

Network Code

Core Kernel Code

FIGURE 5. Surge: CPU Utilization (Kernel)FIGURE 4. Surge: CPU Utilization (Total)

1 2 5 10 25 50
Number of Clients

240

260

280

300

Th
ro

ug
hp

ut
 (K

B/
se

c)

FIGURE 6. SlashCode: Throughput vs. # of Clients

1 2 5 10 25 50
Number of Clients

0

20

40

60

80

100

C
P

U
 U

ti
li

za
ti

on

Idle

Misc

Libraries

mysqld

vmlinux

httpd

FIGURE 7. SlashCode: Utilization vs. # of Clients
5

4.2.2 SPECweb99_SSL

SPECweb99_SSL uses a file generator to create its file
set. This utility creates a large number of directories, each
being about 5MB. The number of directories depends on the
load to be applied during the benchmark run. A load of 500
(simultaneous connections) generates a 1.5GB file set.

For most data gathering runs, we run the benchmark for 4
minutes with 40 seconds of warm-up. We also do a full
SPEC run to ensure that we have a reasonable configuration
competitive with previously submitted SPEC results. A stan-
dard SPEC run must satisfy some requirements, including a
minimum warm-up time, a minimum number of runs, a min-
imum bandwidth reported by all clients, and a maximum
number of errors per client. We gather data for 50 to 350
simultaneous connections. Without tuning, we perform a
SPEC compliant run (unpublished) with 225 connections.

Figure 8 shows the average time per request over all con-
nections. There is little increase in the latency of the system
until we have 250 clients. After that, we see a sharp rise in
the latency. This happens as the system saturates. Figure 9
shows the CPU profile for specweb. We see that for 50 cli-
ents, the server has plenty of idle time (80%). As we increase

the number of clients, the idle time drops quickly. It never
reaches zero because of issues on the client side. We are able
to saturate the machine if running a non-specweb driver. We
see more kernel overhead here compared to SlashCode.
Other than this, the two results are similar, with the web
server consuming the largest fraction.

Summary. SPECweb overheads are dominated by the web
server (~50% of CPU time) that generates dynamic content
by executing cgi scripts. Network stack overhead is low and
thus we expect little benefit from protocol offload.

4.2.3 Trade3

Trade3 is a Java middleware workload that models an
online stock brokerage application. The Trade3 database is
populated with 500 users, each of whom owns a set of shares
and trades them through the application. Trade3 includes a
servlet which performs a random trade when invoked. Thus,
by repeated invocations of this servlet, we simulate a server
running a multi-tier system for trading stocks. We vary the
number of clients connecting to the server from 2 to 40.

The results, shown inFigure 10, show that the server can
handle a relatively constant number of requests per second,
but increasing the number of clients increases the latency per
request. Once we reach 40 clients, the number of pages
served per second drops. If we examine the CPU profile in
Figure 11, we see that most of the overhead is due to the
application server and Java libraries. The linux kernel occu-
pies less than 10% of total CPU cycles.

Summary. Trade3 is another dynamic web workload with
low network overhead. CPU time is dominated by Java pro-
cessing (~25%) and the application server (~30%). We again
expect little benefit from protocol offload.

4.3 Results Summary
Our experiments show that, for static web workloads,

there is significant overhead due to thread management (up
to 25%) and the network stack (up to 30%). For dynamic
web workloads, however, the data processing time dominates
all other tasks. The throughput of the these workloads(~10
Mbps) is much lower than the static web workloads
(~100Mbps). To improve throughput for these workloads,
we must target the primary bottlenecks.

To reduce data processing overheads, we can try and
optimize the code that performs the data processing, or opti-
mize the compiler/interpreter used to run that code. To
reduce the network stack overhead, we can offload the proto-
col stack into hardware. This would reduce CPU load.

5 Analytical Model
In this section, we present an analysis of the potential

benefits of protocol offload for our workloads using a high-
level analytical model developed by Shivam and Chase [9].
This model uses four ratios—lag ratio, application ratio, wire
ratio, and structural ratio—to identify system bottlenecks

300

320

340

360

380

400

420

440

0 50 100 150 200 250 300 350 400

La
te

nc
y

(m
s)

Number of Clients

SPECweb Latency

FIGURE 8. SPECweb: Latency vs. # of Clients

50 100 150 200 250 300 350 400
Number of Clients

0

20

40

60

80

100

CP
U

 U
til

iz
at

io
n

e1000

Idle

Misc

Libraries

Webserver

vmlinux

FIGURE 9. SPECweb: CPU Utilization (Total)
6

and estimate the benefits of protocol offload. Table 4
describes these ratios. For the purposes of this work, the
application ratio is most important.

The application ratio (γ) is the ratio of normalized appli-
cation processing to communication processing. To calculate
the application ratio, the model needs two input parameters,
the CPU occupancy for communication overhead per unit of
bandwidth, normalized to a reference host (o), and the CPU
occupancy for application processing per unit of bandwidth
normalized to a reference host (a). Thus, γ=a/o. For the rest
of this discussion, we assume that the remaining ratios (α, β,
σ) are 1. This implies that the NIC is not the bottleneck. We
make this assumption as we are targeting future network
hardware with plentiful bandwidth.

The application ratio puts a limit on the maximum possi-
ble benefits that could be derived by protocol offload in an
ideal case. The maximum benefit achievable is a doubling of
throughput, when γ=1. This is limited by p/(γ-p+1), where p
is the fraction of network overhead that can be off-loaded to
the NIC. If we assume p=1 (ideal case), then the maximum

benefit is bounded by 1/γ. This assumes that the network
card is itself not limited in any way due to the protocol pro-
cessing that it now has to perform (since all other ratios are
assumed to be 1).

We now examine our applications to see how much each
could possibly benefit by protocol offload. The results pre-
sented do not reflect on the larger scope of protocol offload,
but are applicable to servers running similar workloads.

5.1 Results
We now look at the results obtained for the three types of

workloads. We expect maximum benefits for workloads that
perform little data processing. Table 5 summarizes the
results from the analytical model.

Static Web Content. The results for static web content
workloads revel a significant fraction of network processing
overhead. In the case of AB, the network stack occupies at
most 27% of CPU cycles. In addition, the NIC driver occu-
pies an additional 7%, making it a total of 34% network pro-
cessing overhead. Assuming an ideal scenario in which all
this overhead could be off-loaded, the maximum improve-
ment achievable is 1/γ. In reality, there would still be some
interfacing overhead. Here, γ is 1.95. Thus, the maximum
increase we would see in throughput in the case of ideal pro-
tocol offload is 52%. For Surge and Apache, the network
stack occupies at most 20% of CPU cycles, and the NIC
driver occupies a further 5.6%. This gives a γ of 3, which
bounds the maximum increase in throughput at 34.5%.

Dynamic Web Content. In the dynamic content workloads,
network stack processing overhead is small. For slashcode,
the total overhead is at most 1%, giving a total possible ben-
efit of 1%. For SPECweb, the overhead is higher, at 6.5%
leading to a potential peak benefit of 7%.

Trade3. The result for Trade3 is similar. The total network-
ing overhead is at most 4%, which leads to a maximum
increase in throughput of 4%.

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45
0

L
a
te

n
cy

 (
m

s)

T
h
ro

u
g
h
p
u
t
(P

a
g
e
s/

se
c)

Number of Clients

Latency
Throughput

FIGURE 10. Trade3: Latency & Throughput vs. # of Clients

2 5 10 20 30 40
Number of Clients

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

Idle

Misc

JVM Library

Libraries

vmlinux

AppServer

FIGURE 11. Trade3: CPU Utilization (Total)

Ratio Explanation

Lag (α) Ratio of Processor to NIC speed

Application (γ) Ratio of normalized application processing to com-
munication processing

Wire (σ) Fraction of network bandwidth NIC can achieve

Structural (β) Fraction of networking overhead off-loaded to NIC

TABLE 4. Model Ratios

Workload Network
Overhead

Gamma
(γ)

Max Improvement
in Throughput

AB 34% 1.95 52%

Surge 25.6% 3 34.5%

SlashCode 1% 99 1%

SPECweb 6.5% 14 7%

Trade3 4% 24 4%

TABLE 5. Benefits of Protocol Offload
7

5.2 Conclusions from Model
Results from the analytical model show that protocol off-

load can potentially improve throughput, but only for appli-
cations in which networking overhead occupies a significant
fraction of CPU cycles. For our static web workloads, the
model predicts up to a 50% improvement in throughput if we
use protocol offload. However, most assumptions made by
the model are optimistic in favor of protocol offload. Due to
interfacing overheads, the actual benefits are likely to be
lower that those predicted by the model. This precludes
improvements that would take place if the data processing
overheads were to reduce.

Consider the significant perl processing overhead in
SlashCode. Assume reducing the perl overhead by 50%
translates directly to an improvement in bandwidth utiliza-
tion (i.e., all CPU cycles freed by perl are taken up by the
network stack). In this scenario, offloading the network stack
to hardware could achieve a 62.5% improvement in through-
put, compared to 1% without the improved perl processing.

6 Related Work
Extensive prior work has examined commercial work-

loads. We focus here on analyses that explore network pro-
cessing. Researchers have proactively pursued protocol
offload [3,6,10,12,15], as well as its feasibility, in anticipa-
tion of increased network bandwidth. Recent work has also
analyzed the TCP stack in modern linux kernels and re-vali-
dated the old “1 Hz/1bps” rule of thumb for TCP/IP process-
ing [5]. Other researchers have examined techniques to
reduce data movement overhead by caching data on the net-
work interface [13,14]. Binkert et al. [2] present a full system
simulator targeted at network intensive applications and
examine the memory system behavior of SPECweb99. Our
work differs from the above studies by examining a broad
class of workloads that includes sophisticated commercial
workloads with significant data processing requirements.

7 Conclusions
To improve the performance of web servers, it is impor-

tant that we understand the workloads they run. This paper
presents an analysis of commercial web workloads in terms
of their CPU profile and networking overheads. We show
that, except for static web content serving, CPU usage is
dominated by data processing overheads for generating
dynamic content. Thus, if data processing overheads do not
reduce in the future, protocol offload is unlikely to provide
much benefit to this class of applications. However, for
workloads that only serve data, the overhead due to the net-
work stack can be significant. For static web content serving
workloads, this can be as high as 50%. Protocol offload may
provide significant benefits to similar workloads, such as
storage area networks.

Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grants No. CCR-
0208920, EIA-9972879, Intel and equipment donations from
IBM and Intel. We would like to thank David Becker, Jeff
Chase, and Piyush Shivam for their help and useful feedback
on our work. Sorin is supported by a Duke University War-
ren Faculty Scholarship.

References
[1] Paul Barford and Mark Crovella. Generating Representative

Web Workloads for Network and Server Performance
Evaluation. In Proceedings of the 1998 ACM Sigmetrics
Conference on Measurement and Modeling of Computer
Systems, pages 151–160, June 1998.

[2] Nathan L. Binkert, Erik G. Hallnor, and Steven K.
Reinhardt. Network-Oriented Full System Simulation using
M5. In Proceedings of the Sixth Workshop on Computer
Architecture Evaluation Using Commercial Workloads,
February 2003.

[3] Philip Buonadonna and David Culler. Queue Pair IP: A
Hybrid Architecture for System Area Networks. In
Proceedings of the 29th Annual International Symposium on
Computer Architecture, pages 247–256, May 2002.

[4] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella.
Characteristics of WWW Client-based Traces. Technical
Report TR-95-010, Boston University, June 1995.

[5] Annie P. Foong, Thomas Huff, Herbert J. Hum, Jaidev P.
Patwardhan, and Greg Regnier. TCP Performance Re-
Visited. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 70–79,
March 2003.

[6] The iReady and National Semiconductor Partnership.
Offload Whitepaper.
http://www.national.com/appinfo/networks/files/whitepaper
1.pdf, 2003.

[7] Tony Lau and Yongli An. Running WebSphere Benchmark
Sample Trade3 with Web Performance Tool (WPT). IBM
Developer Works Online Library, March 2003.

[8] Open Source Developer Network (OSDN). SlashCode.
http://slashcode.com.

[9] Piyush Shivam and Jeffrey S. Chase. On The Elusive
Benefits of Protocol Offload. In Proceedings of Workshop
on Network-I/O Convergence: Experience, Lessons and
Implications (NICELI), August 2003.

[10] Piyush Shivam, Pete Wyckoff, and Dhabaleshwar Panda.
OS-Bypass NIC-driven Gigabit Ethernet Message Passing.
In Proceedings of SC2001, November 2001.

[11] SPEC. SPEC WEB99_SSL. http://www.spec.org/web99ssl.
[12] Eric Yeh, Herman Chao, Venu Mannem, Joe Gervais, and

Bradley Booth. Introduction to TCP/IP Offload Engine
(TOE), April 2002.

[13] Kenneth G. Yocum, Jeffrey S. Chase, and Amin Vahdat.
Payload Caching: High-Speed Data Forwarding for Network
Intermediaries. In Proceedings of the 2001 USENIX Annual
Technical Conference, June 2001.

[14] Hyong-youb Kim, Vijay Pai, and Scott Rixner. Increasing
8

Web Server Throughput with Network Interface Data
Caching. In Proceedings of the Tenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 239–250, October
2002.

[15] Hyong-youb Kim, Vijay Pai, and Scott Rixner. Exploiting
Task-Level Concurrency in a Programmable Network
Interface. In Proceedings of the 3rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), July 2003.
9

	Abstract
	1 Introduction
	2 Commercial Web Workloads
	2.1 Static Web Content
	2.1.1 Apache Bench
	2.1.2 Apache with Surge

	2.2 Dynamic Web Content
	2.2.1 Apache with SlashCode
	2.2.2 SPECweb99_SSL
	2.2.3 Trade 3

	3 Experimental Goals and Methodology
	3.1 Experimental Goals
	3.2 Methodology
	TABLE 1. Workload Test Durations

	4 Results and Analysis
	FIGURE 1. AB: CPU Utilization (Total)
	FIGURE 2. AB: CPU Utilization (Kernel)
	TABLE 2. CPU Profile: Categories
	FIGURE 3. Surge: Throughput & Latency vs. # Clients

	4.1 Static Web Workloads
	4.1.1 Apache Bench
	TABLE 3. Apache Bench: Client Side Run Results
	FIGURE 4. Surge: CPU Utilization (Total)
	FIGURE 5. Surge: CPU Utilization (Kernel)
	Summary

	4.1.2 Surge and Apache
	Summary

	4.2 Dynamic Web Workloads
	4.2.1 SlashCode
	FIGURE 6. SlashCode: Throughput vs. # of Clients
	FIGURE 7. SlashCode: Utilization vs. # of Clients
	Summary

	4.2.2 SPECweb99_SSL
	FIGURE 8. SPECweb: Latency vs. # of Clients
	FIGURE 9. SPECweb: CPU Utilization (Total)
	Summary

	4.2.3 Trade3
	FIGURE 10. Trade3: Latency & Throughput vs. # of Clients
	FIGURE 11. Trade3: CPU Utilization (Total)
	Summary

	4.3 Results Summary

	5 Analytical Model
	TABLE 4. Model Ratios
	TABLE 5. Benefits of Protocol Offload
	5.1 Results
	Static Web Content
	Dynamic Web Content
	Trade3

	5.2 Conclusions from Model

	6 Related Work
	7 Conclusions
	Acknowledgements
	References
	Communication Breakdown: Analyzing CPU Usage in Commercial Web Workloads
	Jaidev P. Patwardhan†, Alvin R. Lebeck†, and Daniel J. Sorin‡ {jaidev,alvy}@cs.duke.edu, sorin@ee.duke.edu

