
NANA: A Nano-Scale Active
Network Architecture

JAIDEV P. PATWARDHAN, CHRIS DWYER, ALVIN R. LEBECK,
and DANIEL J. SORIN

Duke University

This article explores the architectural challenges introduced by emerging bottom-up fabrication
of nanoelectronic circuits. The specific nanotechnology we explore proposes patterned DNA nanos-
tructures as a scaffold for the placement and interconnection of carbon nanotube or silicon nanorod
FETs to create a limited size circuit (node). Three characteristics of this technology that signifi-
cantly impact architecture are (1) limited node size, (2) random node interconnection, and (3) high
defect rates. We present and evaluate an accumulator-based active network architecture that is
compatible with any technology that presents these three challenges. This architecture represents
an initial, unoptimized solution for understanding the implications of DNA-guide self-assembly.

Categories and Subject Descriptors: B.2.1 [Arithmetic and Logic Structures]: Design Styles;
B.4.3 [Input/Output and Data Communications]: Interconnections (Subsystems); B.6.1 [Logic

Design]: Design Styles; B.7.1 [Integrated Circuits]: Types and Design Styles; C.0 [Computer

Systems Organization]: General; C.1.3 [Processor Architectures]: Other Architecture Styles

General Terms: Design, Performance

Additional Key Words and Phrases: Accumulator ISA, active network, carbon nanotube, DNA,
defect isolation, defect tolerance, nanocomputing, nanoelectronics, reverse path forwarding,
self-assembly

1. INTRODUCTION

The semiconductor industry’s roadmap identifies a “red brick wall” beyond
which it is unknown how to extend the historical trend of ever-decreasing CMOS
device size. “Eventually, toward the end of the Roadmap or beyond, scaling of
MOSFETs will become ineffective and/or very costly, and advanced non-CMOS

This work is supported an NSF ITR grant CCR-0326157, a grant from Duke University Provost’s
Common Fund, an AFRL contract FA8750-05-2-0018, a Warren Faculty Scholarship (Sorin) and
equipment donations from IBM and Intel. We thank the members of the TROIKA project and
Lavanya Ramakrishnan for their help with this work.
Authors’ addresses: J. P. Patwardhan, A. R. Lebeck, Department of Computer Science, Duke Uni-
versity, PO Box 90129, Durham, NC 27708-0129; C. Dwyer, D. J. Sorin, Department of Electrical
and Computer Engineering, Duke University, Box 90291, Durham, NC 27708-0291; email: {jaidev,
alvy}@cs.duke.edu, {dwyer,sorin}@ee.duke.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1550-4832/06/0100-0001 $5.00

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006, Pages 1–30.



2 • J. P. Patwardhan et al.

solutions will need to be implemented” [International Technology Roadmap for
Semiconductors, 2002 Update, Difficult Challenge #10].

Technology change is fuel for architectural innovation. Evolutionary changes
in CMOS have inspired research on several important topics including wire
dominated designs, power dissipation, and fault tolerance. A revolutionary tech-
nology change, such as replacing CMOS, is a potentially disruptive event in the
design of computing systems.

Emerging technologies for further miniaturization have capabilities and lim-
itations that can significantly influence computer architecture and require re-
examining or rebuilding abstractions originally tailored for CMOS. This article
explores the architectural challenges introduced by emerging bottom-up fabri-
cation of nanoelectronic circuits and develops an architecture that meets these
challenges.

We focus on one specific nanotechnology in this article: DNA-guided self-
assembly [Seeman 1999] of carbon nanotube field effect transistors (CNFETs)
[Bachtold et al. 2001; Fuhrer et al. 2001; Huang et al. 2001] and wires. To
place and interconnect these components, we propose using patterned DNA
nanostructures [Yan et al. 2003b] as a scaffold to which we attach carbon nan-
otubes. The DNA nanostructures create a limited size circuit (node) of CNFETs.
DNA-guided self-assembly can also provide a scaffold for metal that forms the
interconnect between nodes, but without the control available in the patterned
nanostructures, thus producing a random interconnect. There are three aspects
of this technology that significantly impact architecture: (1) limited node size,
(2) random interconnection of nodes, and (3) high defect rates. Our goal is to
develop an appropriate architecture that can be implemented in any technol-
ogy with these characteristics. We also enumerate several important issues to
address during architectural development.

There are likely many possible approaches to developing a functioning sys-
tem. Our goal in this work is not to determine the best approach, rather it is to
simply obtain one approach. Therefore, in this article we adopt the philosophy
of “make it work first, optimize later.” We present one potential solution: an ac-
tive network architecture with an accumulator-based ISA. The limited node size
prevents the design of a single node that can perform all operations. Instead,
we design different node types (e.g., add, memory, shift) based on node size
constraints. A configuration phase at system startup maps out defective nodes
and links, organizes a memory system, and sets up routing in the network. To
execute, an instruction searches for a node with the appropriate functionality
(e.g., add), performs its operation, and passes its result to the next dependent
instruction. In this active network execution model, the accumulator and all
operands are stored within a packet rather than at specific nodes, thus reduc-
ing per-node resource demands. The active network execution model enables
us to encode a series of dependent instructions within a single packet.

This architecture matches our technology characteristics since it: (1) allows
for differing node types with specialized functionality, (2) tolerates a random
interconnection of nodes, and (3) tolerates node and interconnect fabrication
defects. While the architecture has limitations, our design demonstrates that it
is possible to build a general purpose computing system using self-assembled

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 3

nanoelectronic devices despite severe technological constraints. As a first step,
the nano-scale active network architecture (NANA) does remarkably well and
provides valuable lessons for future designs. We believe that NANA is a nec-
essary first step toward exploiting nanotechnology’s potential to overcome the
“red brick wall.” The contributions of this article are:

—We present a list of challenges that are likely to be encountered by system
architects when building a system using self-assembled networks of simple
computational circuits.

—We adapt an existing algorithm to provide defect isolation for node defect
rates up to 30%.

—We propose and evaluate a general purpose architecture built using self-
assembled networks of simple computational blocks, demonstrating that we
can build a computing system despite the hurdles presented by the underly-
ing technology.

—We identify key aspects of the architecture that need to be improved further
to achieve better performance.

The rest of this paper is organized as follows. Section 2 describes DNA-guided
self-assembly of nanoelectronic components and Section 3 discusses the archi-
tectural implications of this technology. We describe our proposed architecture
in detail in Section 4 and present an evaluation of the architecture using two
illustrative examples in Section 5. Section 6 discusses related work and Section
7 concludes.

2. EMERGING NANOTECHNOLOGIES

In this section, we describe the specific nanotechnologies used in this article.
We discuss the electronic components (Section 2.1), DNA self-assembly of these
components into circuit nodes (Section 2.2), and the large-scale interconnection
of these circuit nodes (Section 2.3).

2.1 Carbon Nanotube Electronics

There are many choices for constructing nanoelectronic devices and nanowires
[Bachtold et al. 2001; Cui and Lieber 2001; Huang et al. 2001; Martin et al.
1999; Tans et al. 1998; Tour 2000]. One such promising nanoelectronic device
is a carbon nanotube field effect transistor (CNFET) [Fuhrer et al. 2001; Javey
et al. 2004; Kim et al. 2004; Tans et al. 1998; Wind et al. 2002], in which appli-
cation of a gate voltage modulates the conductivity of a semiconducting nan-
otube. Recent advances enable the separation of metallic nanotubes from semi-
conducting nanotubes, precisely controlling the length of individual nanotubes
[Strano et al. 2003, Zheng et al. 2003] and self-assembly of carbon nanotube
based electronic devices [Hazani et al. 2004]. Therefore, we could use both types
of carbon nanotubes to construct logic gates, memory (e.g., with cross-coupled
NOR gates), and circuit interconnect. Other potential materials (e.g., nanorods
[Martin et al. 1999], silicon nanowires [Cui and Lieber 2001; Huang et al. 2001])
could be substituted for the carbon nanotubes without loss of generality in our
architectural analysis.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



4 • J. P. Patwardhan et al.

Fig. 1. Nanoscale device performance.

To explore the potential of CNFETs, we simulate several circuits using a cus-
tomized SPICE 3f5 kernel that models CNFET behavior in logic gates [Dwyer
et al. 2004b]. We compare CNFET-based logic gates with CMOS using ITRS tar-
get values and some data from industry processes. Figure 1 shows a NAND gate
delay for each approach. To obtain these values we load each circuit output with
four inverters (FO-4) and pass a square input signal through a series of four
inverters to each circuit input. We derive the CNFET I/V behavior, parasitic ca-
pacitances, and inductances from geometric and literature values [Burke 2003;
McEuen et al. 2002]. Our results indicate that CNFET circuit performance is
deep within the “red brick wall” predicted by the ITRS. Industry data shows
much better performance for CMOS NAND gates, but the improvements across
process generations is slowing down. The CNFET results are also pessimistic,
as the theoretical limit is significantly higher [Dürkop et al. 2004]. The added
benefit that CNFETs are amenable to self-assembly makes this an attractive
alternative or supplement to silicon device technology.

2.2 DNA Tiles and Nanostructures

The precise placement and interconnection of individual carbon nanotubes re-
mains an area of diverse research. These integration challenges and their im-
pact on higher-level designs are shared by other emerging technologies (e.g.,
silicon nanowires, quantum dots, etc.). Since these devices are smaller than
the resolution of top-down photolithographic methods, research has explored
various techniques for bottom-up self-assembly.

To overcome the challenge of nanoelectronic integration, we propose using
DNA self-assemblies to produce patterned nanostructures onto which we can
programmably attach carbon nanotubes. DNA’s well-known double-helix struc-
ture is formed through its well-understood base-pairing rules—adenine (A) to
thymine (T) and cytosine (C) to guanine (G). By specifying a particular sequence
of base pairs on a single strand of DNA, we can exploit the base-pair rules as
organizational instructions [Seeman 1999].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 5

Fig. 2. A DNA scaffolding for carbon nanotube circuits.

These DNA tags can be used to create 2D-patterned nanostructures [Winfree
et al. 1998]. For this article we focus on a particular structure that creates
a ‘waffle’-like lattice with repeating cavities of ∼16 nm × 16 nm and 4 nm
separation between cavities [Yan et al. 2003b]. This type of lattice has been
experimentally demonstrated and can achieve sizes that extend to 3 μm on
each side (i.e., more than 150 cavities on a side).

Recently, we demonstrated the ability to place aperiodic patterns on a smaller
lattice [Park et al. 2006], which could enable the placement of carbon nanotubes
or nanowire transistors [Skinner et al. 2005] at arbitrary locations in the lat-
tice. Figure 2(a) shows an atomic force microscopy (AFM) image of an 80 nm ×
80 nm lattice with the letter ‘A’ patterned on it. We can place and interconnect
carbon nanotubes by forming tags (Figure 2(b)) at specific points on the lat-
tice [Dwyer et al. 2005; Yan et al. 2003a] and using a recently demonstrated
technique for attaching the appropriate complementary DNA tags to carbon
nanotubes [Dwyer et al. 2002]. Connections between nanotubes are formed us-
ing a technique called electroless plating [Braun et al. 1998].

The technologies described in this section provide a set of potential build-
ing blocks for constructing nanoscale systems, and more details are provided
elsewhere [Patwardhan et al. 2004]. The demonstrated operation of CNFETs
and the ability to attach DNA tags to them make this a promising nanoelec-
tronic technology. The DNA self-assembly technique is independent of the spe-
cific nanoelectronic device used, however, the limited size of each lattice (node)
presents challenges for creating large sophisticated circuitry. We now discuss
how to interconnect these nodes into a computational substrate.

2.3 Large-Scale Interconnection

Using inexpensive laboratory equipment we could potentially use self-assembly
to simultaneously build as many as 1012 identical, but small, nodes. This num-
ber of nodes, if placed 0.25 μm apart, would cover a 325 cm × 325 cm area,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



6 • J. P. Patwardhan et al.

Fig. 3. Schematic rendering of a self-assembled DNA interconnection network after metal
decomposition.

or the equivalent area of ∼150 wafers (300 mm diameter). Although the size
of an individual node is well above the minimum feature size of photolithogra-
phy, the number of nodes fabricated through self-assembly limits how heavily
the overall process can rely on conventional patterning. Self-assembling nodes
onto a substrate at well-defined places is also difficult without “naming” each
placement site (pick-and-place methods will not scale to this number of compo-
nents). Even with DNA tags on the substrate, the nodes are not guaranteed to
fall into place precisely. Most conventional architectures require precise place-
ment and interconnection between circuits. Therefore, even if we could use a
conventional photolithographically patterned network to interconnect nodes,
the result would be a random interconnection due to the random placement of
nodes on the substrate. This is the sacrifice a self-assembly process imposes:
precision and control exist only at small length scales (∼2 μm, for now).

We use individual DNA strands that self-assemble between node edges, pro-
viding a scaffold for metal that forms an electrical connection [Liu et al. 2004;
Yan et al. 2003b]. This larger scale process cannot deliver the precise control
found in the earlier process used to assemble the nodes, but it can fabricate
single wire interconnections between the edges of the nodes, as illustrated in
Figure 3. In this article, to simplify presentation, we model system fabrication
using a uniform grid and introduce defective nodes and links. Furthermore, pre-
liminary evaluations comparing the grid approach to a physical model (based
on a random walk) of DNA self-assembly of interconnections reveals that the
two techniques produce similar overall network characteristics.

3. ARCHITECTURAL IMPLICATIONS

The DNA-guided self-assembly process described in Section 2 presents several
challenges that must be addressed when designing a system. The three primary
aspects of the fabrication process are small-scale control of placement and con-
nectivity within a single node (Section 3.1), large-scale randomness in node
placement and interconnection (Section 3.2), and high defect rate (Section 3.3).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 7

These three aspects significantly impact architectural decisions (Section 3.4),
particularly since conventional architectures assume precise control at both the
small-and large-scale.

3.1 Small-Scale Control

The ability of DNA-guided self-assembly to achieve only small-scale control
impacts architectural decisions in several ways. Three of the most significant
are: limited space, limited coordination, and limited communication.

Limited space. A 150 × 150 node can have a maximum of 22,500 CNFETs,
however, on-node interconnect will reduce efficiency since a node only has two
levels of interconnect. Furthermore, a portion of each node must be allocated
as a “pad” for the DNA interconnect to other nodes.

The limited node size presents a trade-off in node design. At one extreme, we
could design just a single node type that contains both computation and storage
capabilities. However, since storage and computation circuits must share the
node, each may be severely limited in capability. Alternatively, we could de-
sign a few specialized node types, some devoted to computation and others to
storage. Even when designing a specialized node, the limited space impacts
architectural decisions. For example, large state machines are not an option
within a node since there is insufficient space for state storage. Similarly, the
number of bits available in a storage node may be limited, thus affecting an
architecture’s word size.

Limited communication. Without large-scale control, there is limited com-
munication among nodes. Each node has four neighbors and there is no long
haul communication. Furthermore, the connections between nodes are limited
to single wires. Although the degree of each node or the number of connec-
tions between neighbors could be increased, each connection occupies precious
edge space. By contrast, conventional CMOS designs exploit multiple metal
layers for long-haul communication and large-scale control to create multi-wire
connections between components.

Limited coordination. Conventional CMOS designs rely on precise control
during fabrication to create sophisticated circuits (e.g., 64-bit adder with carry
lookahead). For our technology, if the most sophisticated node is a full-adder,
then it is unlikely that 64 such nodes can be coordinated to implement a 64-bit
adder. Coordination among nodes is limited to immediate neighbors and it
is difficult a priori to configure a group of nodes to operate in a coordinated
manner.

3.2 Large-Scale Randomness

Our proposed self-assembly process provides excellent control at the small-
scale, however, it cannot achieve such control at large scales. The resulting
randomness introduces some additional issues that architectures must address.

Random node placement. The self-assembly process does not guarantee
where any particular node will lie in the final circuit. Each node simply attempts
to connect to other nearby nodes. The architecture and machine organization
must accommodate this arbitrary placement of functional blocks.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



8 • J. P. Patwardhan et al.

Random node orientation. Similar to the random node placement, the as-
sembly process we envision does not provide control over node orientation. Any
system design must tolerate arbitrary node orientations and cannot make a
priori assumptions on orientation. For example, it is incorrect to assume that
the “east” side of one node will connect to the “west” side of its adjacent node.

Random node connectivity. Connections between nodes are not guaranteed
to succeed during self-assembly. Therefore, it is possible for any node to have be-
tween zero and four functioning connections to its neighbors. The architecture
must not make any a priori assumptions about available connectivity. When
combined with random orientation, it is possible for nodes to connect in a tri-
angular shape rather than the 2 × 2 grid one would assume with nodes that
have a degree of four.

3.3 High Defect Rates

An inherent aspect of any self-assembly process is defects. Fabrication defects
can influence node functionality and connectivity. Some interconnect defects
cause the above problems with connectivity. While some aspects of fabrication
can reduce the likelihood of defects (e.g., purification steps or overdesign of DNA
tags), there will always be a significant number of defects and any architecture
using these technologies must tolerate them.

3.4 Architectural Challenges

The above discussion exposes several aspects of this fabrication technique for
nano-scale circuits that must be addressed by any architecture and its corre-
sponding implementations. In this subsection, we enumerate several impor-
tant challenges to developing an appropriate architecture for this emerging
technology. This list is not exhaustive, but rather highlights some important
challenges.

Designing nodes. The architect must decide what functionality to place in
each node. Should there be homogeneous or heterogeneous nodes? If hetero-
geneous, then what types of nodes? How does node design affect connectivity/
communication with other nodes, and what primitives should be provided?

Utilizing multiple nodes. Since individual nodes do not contain sufficient
computation and storage to perform much useful work in isolation, an architect
must determine how to exploit multiple nodes. This must be achieved given the
above limitations on coordination, communication, placement, orientation, and
connectivity.

Routing with limited connectivity. Traditional routing techniques may not
apply, since there is limited space for the complexity of dynamic routing and
there are insufficient guarantees on node placement and connectivity to use
conventional static routing.

Developing an execution model. The execution model embodies the software-
visible aspects of the architecture and can be influenced by implementation
constraints or instruction set requirements. For the envisioned fabrication
technique, the execution model must overcome the severe implementation con-
straints outlined above while enabling a reasonable instruction set.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 9

Developing an instruction set. Programmable systems require an interface
that enables software to specify operations. Typically, this is achieved by the
instruction set architecture (ISA). The ISA may be influenced by the underlying
capabilities of the technology. Given our fabrication technique, the architect
must design an appropriate ISA that supports the above execution model.

Providing a memory system. Storage is a crucial component of most comput-
ing systems, regardless of the execution model. The ability to store values for
future use and to name and find particular values is a necessary aspect of most
computing paradigms.

Interfacing to the micro-scale. An important aspect of any nano-scale system
is the interconnection to larger-scale components (e.g., micro-scale). This con-
nection is necessary for (at least) providing an I/O interface for communication
with the outside world. It may be possible for the architecture to exploit this
interface in other ways.

The challenge is to address each of these issues such that we arrive at a
functioning system. There are likely many possible approaches to developing a
functioning system. Our goal in this work is not to determine the best approach,
rather, it is to simply obtain one approach. With any emerging technology, we
must limit the scope of studies to ensure forward progress. The remainder of
this article presents one potential architecture.

4. AN ARCHITECTURE FOR SELF-ASSEMBLED NANO-ELECTRONICS

As an initial approach to address the issues raised in Section 3, we pro-
pose NANA, an active network architecture that is compatible with our fab-
rication technology. The architecture is like an active network [Tennenhouse
and Wetheral 1996] in that execution packets that contain instructions and
operands search through a loosely-structured sea of processing and memory
nodes for the functionality that they need at each step of execution. This archi-
tecture matches our technology characteristics since it (1) allows for differing
node types with specialized functionality, (2) tolerates a random interconnec-
tion of nodes, and (3) tolerates node and interconnect fabrication defects.

4.1 System Model

The system model is a random interconnection of various node types in which
all nodes contain circuitry for communication and each node has some special-
ized circuitry (e.g., processing, memory, etc.). Groups of nodes are organized
into cells. A node communicates with a neighboring node via a single link that
is asynchronous and bidirectional (time-multiplexed on a single physical wire).
Each cell has a via that is its connection to the micro-scale, and one of the nodes
connected to the via acts as the anchor node for the cell. Inter-cell communica-
tion occurs through a micro-scale interconnection network. The memory nodes
in each cell comprise a portion of the global memory space. Some fraction of
nodes are configured as memory ports to provide an interface between execution
packets and memory storage. Figure 4 illustrates our system model. To impose
structure on the interconnection network and the memory system, there is a
configuration phase [Patwardhan et al. 2005] that occurs before any execution.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



10 • J. P. Patwardhan et al.

Fig. 4. (a) System model. (b) Processing nodes (P), memory nodes (M), memory port nodes (M*),
anchor node (A), and via (V). This schematic is not to scale (w.r.t. nodes per cell).

Reconfigurable architectures [Culbertson et al. 1996; DeHon 2002; Goldstein
and Budiu 2001; Heath et al. 1998] have demonstrated that this approach is
important in order to achieve high performance in the context of highly-focused
(i.e., aggressive) or highly-defective technologies, including nanotechnology. We
describe the purpose, beyond defect tolerance, and operation of the configura-
tion in detail later in this section.

While node functionality is heterogeneous, all nodes have some common re-
sponsibilities. Each node generates its own local clock (we choose a clock fre-
quency of 10 GHz, which is pessimistic, given the data in Figure 1) and commu-
nicates asynchronously with its neighboring nodes using signaling techniques
similar to push-style pipeline systems. High-level communication between two
devices over a single wire can be managed using simple two- and four-phase
single wire techniques [van Berkel 1996]. Each node must also contain rout-
ing functionality for determining the outgoing link for an incoming packet (or
the result of an operation). This circuitry maintains node state (e.g., currently
processing a packet) and handles link contention.

4.2 Execution Model

The execution model relies on an accumulator-based ISA. Conceptually, the ac-
cumulator is initialized and then a sequence of operations is performed on the
corresponding series of operands. The accumulator-based ISA reduces the need
for widespread a priori coordination and communication among many compo-
nents (e.g., associative lookup in issue queues), since the only data dependence
involves the accumulator, and instructions are processed in order [Kim and
Smith 2002]. We support accumulator-based execution by forming an execution
packet that contains the operations, the accumulator, and all operands in ap-
propriate order. Instructions are executed in the order specified in the packet, as
they are routed through the network and find the requisite functional units (or
memory ports). Logically, each functional unit performs its specified operation,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 11

Fig. 5. Packet format.

removes the operand and forwards the new accumulator and the remaining
operands to the subsequent functional units. Each subsequent functional unit
performs a similar sequence until all operations in the packet are completed.
Memory operations generate memory packets that are handled by the memory
ports, as discussed in Section 4.5. Packet sequencing is achieved using a process
called chaining, discussed in Section 4.6.

Our system and execution model enables significant parallelism by instanti-
ating multiple execution packets within a cell and in multiple cells. While this
parallelism is an important aspect of our architecture that fully exploits the
capabilities of the underlying technology, in this article we focus primarily on
the operation of a single cell and sequentially instantiate execution packets.

To augment the defect tolerance of configuration and to protect against tran-
sient faults, we could add a signature vector to each packet and verify the
integrity of a computation performed by the packet. The signature vector is
operated on like the operands field of a regular execution packet, with the ex-
ception that the initial signature is not consumed by the operation. The order
of instructions will be reflected by a characteristic signature vector and can
be used to determine if the nodes performing those operations were function-
ing properly during the signature calculation. This approach can be further
augmented with redundant execution packets and a voting mechanism.

4.3 Instruction Set and Packet Formats

The format of an execution packet is: header, instructions, operands, tail.
Specific bit patterns delineate field boundaries. The header is a fixed-length
field that includes packet type and other metadata. The instructions field is
a variable-length list of opcodes in program order. The operands field is a
variable-length list of operand values. To accommodate the limited node size,
we use a bit-serial implementation. The active network architecture and accu-
mulator ISA are independent of this choice and provide an architecture that
can scale with improvements in node capabilities (i.e., multi-bit operations).
Figure 5 shows the execution packet format for our bit-serial implementation.
The operands field is divided into bit-slices from least significant bit to most
significant bit (from packet head to tail). Each bit-slice starts with a bit from

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



12 • J. P. Patwardhan et al.

Table I. NANA Instruction Set

Instruction Type Instructions
Arithmetic ADD, INC, SUB, DEC, SHL, SHR
Comparison COMPEQ, COMPGT, COMPLT, SETEQ, SETGT, SETLT,

SETZ
Operand Stream Control LDCONST0, LDCONST1, CPACC, MOV, DELOP,

OPFLUSH, SWAP
Logical AND, NAND, NOR, NOT, OR, XOR, XNOR, NOP
Load LD [Mem], LDI [Mem]
Store ST [Mem], STI [Mem]
Conditional Store CST [Mem], CST RST [Mem], CRST [Mem], CSTI [Mem],

CSTI RST [Mem], CRSTI [Mem]
Unconditional Control Transfer JMP [Mem], CALL [Mem],JMPI [Mem],CALLI [Mem]
Conditional Control Transfer CALLNZ [Mem], CALLZ [Mem], CALLNZI [Mem],

CALLZI [Mem]

the accumulator and is followed by each bit (for the particular bit-slice) of the
operands.

The instructions that this architecture supports must be bit-serial in nature
and require little communication between bit-slices. Many instructions are sim-
ple to implement with limited circuitry (e.g., ADD, SUB, OR, AND, XOR, NOR,
NAND, compare, move) and require only small extensions to a bit-serial full
adder circuit. Each operation requires only a small amount of information (e.g.,
carry-out bit) to be communicated to subsequent bit-slices. This simplifies the
implementation details of the circuits so that they will fit within the node size
limits of the technology. Although each instruction is bit-serial, the bit interleav-
ing enables parallel execution of consecutive operations in a pipelined manner.
Instructions supported by NANA can be divided into nine categories and are
listed in Table I.

The serial nature of this architecture and the limited node complexity of the
technology make certain operations difficult. Table II lists several instructions
specially designed to help overcome these difficulties. For example, right shifts
(moving bits from the tail toward the head) are difficult because they require
bits to be forwarded ahead of other bits unless entire operands are stored at
the functional node. Since we assume that both operand storage and ALU-
type functionality in a single node requires too much area for our limited node
size, we exploit the stack-like nature of the operand stream to support right
shifts. When a right shift is executed, it also places the result at the end of the
operand stream. Thus, to execute a right shift, we buffer the field separator
between bit-slices and send out the next observed data bit before re-inserting
the field separator into the packet bit stream.

The bit-slice packet encoding also complicates memory operations. For exam-
ple, a load requires all of its address bits to generate a request. If the address
is in the operand stream, then it is impossible for the load to interleave the
resulting data in the same operand stream, since all the low-order bits are
ahead in the packet flow before the entire address is obtained. Similar diffi-
culties exist for stores. Therefore, a packet cannot both calculate an address
and use it in the same packet. To address these limitations, we provide three

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 13

Table II. Definitions of a Selected Subset of Instructions

Instruction Operation
MOV Move accumulator to end of operand stream
SWAP Swap first and second operand
SHR Shift accumulator right by 1 bit, move accumulator

to end of operand stream
DELOP/OPFLUSH Remove one/all operands from operand stream
CPACC Create copy of accumulator at end of operand

stream
SET (EQ/GT/LT/Z) Set flag bit in tail if condition satisfied, consume

accumulator
COMP (EQ/GT/LT) Set flag bit in tail if condition satisfied, consume

first two operands
LDI [Mem]/ STI [Mem] Load/store indirect through constant address [Mem]
CST [Mem]/CSTI [Mem] Conditional store direct (CST) or indirect (CSTI) to

[Mem] (status bit in tail must be set)
CST RST [Mem] Conditional store to [Mem], reset status bit after

performing store
JMP [Mem]/JMPI [Mem] Fetch instructions into existing packet from direct

(JMP) or indirect (JMPI) address [Mem]
CALL [Mem]/CALLI [Mem] Create new packet using instructions from direct

(CALL) or indirect (CALLI) address [Mem]
CALLNZ [Mem]/CALLNZI [Mem] Fetch instructions into new packet if status bit is

set (not zero) (direct/indirect)
CALLZ [Mem]/CALLZI [Mem] Fetch instructions into new packet if status bit is

not set (zero) (direct/indirect)

specific types of memory addressing: immediate, constant address and indirect
address. Constant addressing requires the address to appear in the instruction
field of the packet. Indirect addressing supports indirection through a memory
location that is specified as a constant in the instruction field of the packet.
We also provide special instructions (JMP & CALL) for instruction sequencing
(discussed in Section 4.6). Conditional execution is supported through status
bits (e.g., condition codes) in the packet tail. Currently, we support conditional
store and CALL instructions that must wait to execute until the packet tail
arrives so that they can examine the appropriate status bit.

Programming NANA is similar to programming other accumulator based
ISAs [Campbell-Kelly 1998; Kim and Smith 2002, 2003; Lavington 1978], how-
ever, care must be taken to account for system capabilities and constraints. For
example, the ‘shift right’ instruction (SHR) is constrained by node resources to
shift the accumulator and move it to the end of the operand stream, while the
‘shift left’ instruction (SHL) operates as expected (i.e., it shifts the accumulator
left by one bit). Another constraint arises from the structure of the memory
system—all loads must precede stores in a packet. Consider a simple code frag-
ment (x = x + *(y + a)) that computes a memory address (y + a) and then adds
the contents of that location to another variable stored in memory. Due to the
load-store ordering constraint, instructions must be divided into two packets.
Table III shows the two packets needed to implement the code segment, and
how their fragments are arranged in memory. The first packet, starting at ad-
dress 0×10, performs an address calculation (y + a) and stores the result in a

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



14 • J. P. Patwardhan et al.

Table III. Memory Layout for Two Packets that Compute x=x+*(y+a)

Address Instruction NextPC Address Instruction NextPC
0 × 10 LD y 0 × 14 0 × 40 LDx 0 × 44
0 × 14 LD a 0 × 18 0 × 44 LDI z 0 × 48
0 × 18 ADD 0 × 1A 0 × 48 ADD 0 × 4A
0 × 1A ST z 0 × 1E 0 × 4A STx 0 × 0
0 × 1E CALL(0 × 40) 0 × 0

third location, z. The last instruction, at address 0×20, chains this packet to
the next packet, which starts at address 0×40. The second packet performs the
addition of x with the value stored at the memory location pointed to by z, and
stores the result into x (i.e., x = x + *z). This packet executes by first loading
the value of x, then performing an indirect load on z (instruction at 0×44). Next,
it executes the add and stores the result into x. This example illustrates some
constraints that must be faced in programming NANA. We expect that as the
underlying technology matures, a richer ISA with more complex instructions
will become possible, including efficient variable bit shifts, bit-serial multiplica-
tion, and division. Until then, we compose these more sophisticated operations
in software using simpler primitives.

4.4 Interconnection Network: Finding Resources for Execution

The active network architecture must enable packets to find what they need
without deadlocking or livelocking, despite high defect rates and traveling
through a randomly-interconnected sea of nodes. To avoid request/response
deadlock (i.e., fetch deadlock), the minimum requirement is three logical net-
works: one for execution packets, one for memory request packets, and one
for memory response packets. Each of these logical networks is irregular and
must provide deadlock- and livelock-free routing. While we could implement
these three networks using three virtual channels [Dally 1992] per unidirec-
tional link, this unnecessarily increases the amount of buffering required on
a single node. We reduce the requirement to two virtual channels per unidi-
rectional link by creating distinct physical networks for execution and mem-
ory; we explain how this is implemented in Section 4.5. We also use worm-
hole routing since it requires the least buffering on each node (1 bit per
channel).

4.4.1 Imposing Structure with Gradients. Virtual networks avoid fetch
deadlock, yet each network must still provide deadlock- and livelock-free rout-
ing. Given our irregular networks, we create a spanning tree using the reverse
path forwarding algorithm (RPF) [Dalal and Metcalfe 1978; Patwardhan et al.
2005] and then employ a variant of up*/down* routing [Schroeder et al. 1991], a
degenerate case of turn-model routing [Glass and Ni 1992], and back pressure
flow control. The challenge is implementing these techniques with limited node
functionality.

To meet this challenge, we equip each node with two forms of communica-
tion: (1) broadcast and, (2) routing along gradients [Johnson and Maltz 1996;
Intanagonwiwat et al. 2000]. Packet headers include information on the type of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 15

Fig. 6. A 32×32 grid of memory and processing nodes with one established gradient (North).

communication to use. Broadcast requires minimal state per node and is used
during configuration only. Gradients reduce per-node resources while still en-
abling deadlock- and livelock-free routing. We use the RPF algorithm to create
a spanning tree with a specific via as the root and establish a gradient with
a specialized packet. Each node marks the link on which the gradient packet
was received (i.e., points to its parent in the spanning tree) and broadcasts the
packet to its other neighbors. A node will not broadcast gradient packets after
having seen the first packet. This process can be generalized to any number
of gradients if each node records an identifier for each gradient it detects. The
broadcast algorithm terminates when all reachable nodes have received the
gradient. There is no external action required to terminate the algorithm, and
each node automatically stops forwarding broadcast packets when it has been
configured.

We use five gradients: one for each planar direction (north, south, east, and
west), and an additional gradient that establishes cell boundaries and the direc-
tion toward the via in each cell (called the cell gradient). The planar gradients
are established by starting the broadcast at the north, south, east, and west
edges (or corners) of the system, respectively. Figure 6 illustrates a gradient es-
tablished from the upper left corner (north) in a 32×32 grid with a 30% defect

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



16 • J. P. Patwardhan et al.

Fig. 7. Percentage of nodes reachable by gradient broadcast for varying defect rates.

rate. Defective nodes, not drawn in this figure, can cause islands of disconnected
nodes such as the region near the via.

Configuring Cells. The process is initiated at each via in parallel by broad-
casting a cell ownership packet that includes a cell identifier. The cell gradient
broadcast stops when its wave front collides with the wave front from an adja-
cent via. Nodes detecting a conflict in cell identifiers stop the broadcast, creating
a boundary between cells, and record that they are boundary nodes.

Tolerating Defects. Creating spanning trees using a broadcast flood maps out
defective nodes and links, since no other node will have a gradient pointer to
the defective node. If routing is restricted to follow a gradient, then packets will
never be sent to a node that did not receive a gradient packet. Figure 7 shows
the percentage of nodes that can be reached by a broadcast for increasing node
defect rates. Each point on a curve is the average of ten simulation runs with
different distributions of defects in the network. The different curves correspond
to different network sizes. For defect rates up to 20%, the broadcast reaches
most of the functional nodes. A majority of functional nodes is still reachable
for defect rates up to 30%, beyond which we see a sharp drop in the number of
nodes receiving the broadcast because increasingly large regions are isolated
from vias. Our analysis also shows that it is better to broadcast the planar
gradients from an edge than from a corner of a rectangular or square network
of nodes. In general, a via with more nodes surrounding it has a better chance
of reaching a larger set of nodes.

Our defect model assumes that the routing circuitry for a node is either
fully functional or not operational at all.1 We can tolerate shorts in the node
interconnect, and we call such defects broadcast defects because they represent
the unintentional broadcast (to more than one link) of packet bits. Such defects
are difficult to avoid during fabrication and require an arbitration scheme,
similar to fixed back-off media access schemes in networks. The asynchronous
link controllers in each node can be designed to assert a link-good signal after

1The general Byzantine defect model, in which defective nodes can produce arbitrary behavior,
has been considered in the internet literature, but tolerating such defects requires a great deal of
complexity at each node [Castro and Liskov 1999].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 17

a random interval of time after power-up. The randomness can be introduced
during the self-assembling process [Dwyer 2003]. Every node monitors its links
for the link-good signal and marks any link that has received more than one
signal as defective. When the node’s internal random interval has elapsed, if
the link is not already marked defective it asserts its own link-good signal on all
links. This arbitration scheme identifies both shorts and opens on links between
nodes. The nodes connected to the via essentially share a single link (the via)
that appears as a broadcast defect. The result of this arbitration scheme is for
a single node to remain actively connected to the via, thus acting as the cell
anchor.

Due to defects, some vias may not have a path to any of the four planar
gradient destinations. This can be detected by monitoring the via at the micro-
scale during the broadcast of each of the planar gradients. If the via fails to
receive any of the gradient broadcast packets, it should be marked as defective
and not participate in cell configuration.

4.4.2 Execution Packet Routing. The spanning tree structure imposed by
gradients provides the framework for packet routing. Execution packets and
memory packets never share physical links and thus cannot block each other.
Up*/down* routing on the spanning trees prevents routing deadlock and live-
lock. However, execution packets must be able to find the necessary resources
for execution, and memory packets must successfully find the appropriate mem-
ory location, which responds if necessary. We discuss memory packet routing
in Section 4.5.

To avoid deadlocking execution packets, we simply follow a single gradient
(up* on one spanning tree) on one virtual channel until we reach a cell bound-
ary, then reflect the packet back into the cell on the opposite planar gradient
but on the other virtual channel. Reflection only occurs if there are remain-
ing instructions in the packet, otherwise a special packet is sent to the anchor
node to indicate completion. We note that the header can run ahead of the
operand stream allocating nodes for instructions (due to execution delay in a
node). This approach can indefinitely bounce a packet between cell edges. The
only constraint is that packet length must be less than the total number of
nodes in the round trip traversal. Since execution packets only traverse in the
up* direction of the spanning tree, each node must only store a single pointer
per spanning tree (the gradient direction). An execution packet’s ability to find
the appropriate resources depends on several fabrication variables, including
defect rates and the distribution of node types (evaluating this space is future
work). In the next subsection, we describe how we can exploit the packet-routing
infrastructure to configure a fully addressable memory system in each cell.

4.5 Memory

Each cell represents a local namespace for memory and includes both data and
instructions. The memory system must be able to (a) allocate (number or name)
its locations, (b) provide an interface to execution packets, and (c) route memory
packets (both requests to specified locations and responses back to requestors).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



18 • J. P. Patwardhan et al.

4.5.1 Memory Allocation. The memory network is a spanning tree rooted
at the cell anchor. To configure memory, allocation packets are injected from
the via through the anchor node, initially routed on virtual channel zero using
any planar gradient. When an unallocated memory node receives an alloca-
tion packet, it records the address, marks itself as allocated, and sinks the
packet. The second allocation packet received by this node is forwarded along
the specified gradient, forming a branch in the network. For the third allocation
packet, the node modifies the header to route the packet on virtual channel one
along a planar gradient that creates a second branch in the network. Three-
fourths of the subsequent allocation packets arriving on virtual channel zero
are forwarded along the first branch, while the remaining packets use the other
branch and switch to virtual channel one. Packets on virtual channel one are
never modified. Cycles in the memory network are prevented by having an
allocated node only accept configuration packets on the same physical link as
its original allocation packets.

Memory ports are allocated after memory nodes and must have three good
links (excluding the link used by the incoming packet) with three distinct planar
gradients. Ports never change an allocation packet gradient, thus keeping the
remaining two links free for the execution network. Memory ports are unnamed,
except for one port where we initiate execution. Non-memory nodes between
memory nodes route allocation packets according to the specified gradient and
reserve the corresponding links only for memory operations. A second planar
gradient configuration creates new spanning trees that do not include any of
the memory network links, thus creating two separate networks. Figure 8 il-
lustrates the allocation of 64 memory locations and 64 ports on a 32×32 grid
with a 3% defect rate. For illustration only, we include only the West planar
gradient on the execution network and use a low defect rate on a small grid.
Clearly, in this memory system the anchor node could be a bottleneck.

4.5.2 Interfacing Execution and Memory. The interface between the ex-
ecution network and the memory network is controlled by memory ports
that assume responsibility for handling all memory operations, including the
JMP/CALL instructions for packet instantiation (see Section 4.6). When an
execution packet needs to perform a constant or indirect memory operation,
it searches for a memory port. A memory port servicing an execution packet
stalls the execution packet, but at different points for loads and stores. Since
load addresses are contained in the instruction field, the load can immediately
issue and only stall the packet when the first bit of the operand stream arrives.
Thus, the header continues searching for resources for subsequent instruc-
tions. When the memory port that initiated the load receives the response, it
interleaves the memory contents into the execution packet’s operand stream,
enabling the operand stream to continue forward. A store must see the entire
operand stream to extract the data, and after the node issues the store, it stalls
the packet until the store is acknowledged. This acknowledgment ensures inter-
packet memory disambiguation. Memory ports also support indirect memory
operations which require back-to-back memory operations: one to load the ad-
dress, and the other to access the contents at that address. We implement this

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 19

Fig. 8. Memory network. 32×32 grid with a fully configured memory network, showing one gra-
dient (West).

by first issuing a constant load to obtain the address, and then using the result
to generate another address for the load or store.

4.5.3 Routing Memory Packets. Memory packets are routed on either a re-
quest or response virtual network (two virtual channels per unidirectional link)
that each obey up*/down* routing. Routing in the up direction follows the cell
gradient up the spanning tree to the anchor node where the packet is broadcast
in the down direction. Broadcasting is necessary since the destination memory
node or port could be anywhere in the memory network. Loads require two
full traversals of the memory network. However, since the anchor node is a
serialization point for memory operations, it can acknowledge a store by broad-
casting down the response network. Memory operations for addresses outside
the originating cell are passed by the anchor onto the microscale network.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



20 • J. P. Patwardhan et al.

4.6 Packet Instantiation and Chaining

Entire execution packets (from header through tail) can be stored in memory by
fragmenting them across memory nodes. Each fragment contains a portion of
the execution packet and the memory address of the next sequential fragment
(zero indicates termination). The fragments are written into memory using the
micro-scale interface to inject store requests into the memory network. Pack-
ets are reassembled and instantiated on the execution network at a memory
port using special sequencing instructions. Initial execution starts by using the
micro-scale interface to inject one of these instructions on the memory response
network for the named memory port.

Chaining is the process of sequencing instructions or packets under soft-
ware control by including a special instruction as the last operation. We im-
plement two forms of the sequencing instruction: (1) CALL creates an entirely
new packet, but stalls until all previous instructions are complete (i.e., it sees
the packet tail), and (2) JMP injects new operations into the existing packet
by stalling the operand stream, thus enabling accumulator forwarding. Con-
ditional CALL is easily supported since the instruction waits for the packet
tail. Execution of one packet can overlap with its dependent packet’s search for
functional and memory nodes. We leave full exploration of the instruction set
and various forms of parallelism as future work.

4.7 Improving Node Utilization

While the four planar gradients allow us to route execution packets in the
cell, we find that only a small fraction of all execution resources in a cell are
used. This is because the route taken by the execution packet depends on its
insertion point in the cell and the gradient that is being used to route. The
execution network within the cell does not have a well-defined structure if we
use planar gradients for routing. To improve the number of nodes reachable by
execution packets, we need to modify the structure of the execution network
within a cell.

We add a second via and anchor node (“execution anchor”) to the cell. This
via is used only by the execution network. Once the memory system has been
created, we broadcast an “execution” gradient in the cell. This gradient reaches
nodes that have not been included in the memory network and any ports on the
memory network. This allows us to create an execution network with better
structure by performing a depth-first traversal on the spanning tree created
during the broadcast of the execution gradient. All execution packets follow
this depth-first order, ensuring high execution node utilization. The memory
and execution networks now include most of the nodes in the cell, potentially
allowing the use of about 97% of the cell (some nodes can become isolated
during the creation of the memory network). However, as we discuss in Section
5.5, there are other aspects of NANA that limit node utilization.

5. PRELIMINARY EVALUATION

This section presents a preliminary evaluation of NANA. Our goal is to demon-
strate the viability of the approach and to provide more details on execution.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 21

Fig. 9. Node floorplan.

CNFET device characteristics suggest that this technology may have signif-
icant advantages over silicon in terms of power, delay, and cost. We are col-
laborating with physical scientists to fabricate and characterize CNFET elec-
tronics, which will enable quantitative evaluation. We have developed a tool
chain to support automated circuit design [Dwyer et al. 2004b, 2004c] and ar-
chitectural evaluation. We first present an initial node floorplan, describe our
simulation framework, and then demonstrate system operation and provide
preliminary performance results using two simple programs: (1) Fibonacci is
strictly an illustrative example, and (2) string matching reveals the potential
to exploit massively parallel computation with nanoelectronics. We conclude
the section with an analysis of the strengths and weaknesses of the proposed
design.

5.1 Node Floorplan

Figure 9 shows an initial floorplan for a 3μm × 3 μm node that includes
both an ALU and 16 bits of data storage with 8-bit addresses. The four semi-
circles around the node represent contact points for inter-node links. The four
transceivers control data transfer between the node and its neighbors. Configu-
ration and gradient state is stored in the block denoted ‘Gradients,’ while control
logic is distributed in the four blocks marked ‘Control,’ one of which is also re-
sponsible for decoding instructions (marked ‘Control/Decoder’). The small, un-
labeled blocks next to transceivers are the interfaces between the transceiver
and the control/data logic of the node. The largest area is consumed by the
various state machines sized according to the requirements derived from our
simulator. Our current implementation assumes specialized nodes, enabling
more area for control and buffering.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



22 • J. P. Patwardhan et al.

Table IV. Packet Layout

Address Op Next Address Op Next
0 × 10 LD (0 × 30) 0 × 14 0 × 26 CPACC 0 × 28
0 × 14 LD (0 × 32) 0 × 18 0 × 28 ADD 0 × 2A
0 × 18 LD (0 × 34) 0 × 1A 0 × 2A CST (0 × 36) 0 × 2E
0 × 1A DEC 0 × 1C 0 × 2E ST (0 × 34) 0 × 32
0 × 1C CMPZ 0 × 20 0 × 32 ST (0 × 32) 0 × 36
0 × 20 ST (0 × 30) 0 × 24 0 × 36 CALLZ (0 × 10) 0 × 0
0 × 24 SWAP 0 × 26

5.2 Simulation Framework

We evaluate NANA using a custom event-driven simulator written in C++
that simulates the system in detail. The simulator models activity within each
node down to bit exchanges between components. The simulator models all
node types and the system at all stages, including gradient broadcast, memory
configuration, execution configuration and run-time. It allows the user to vary
a number of system parameters, including the size of the network, node type
distribution, event latencies, defect rate, and number of cells being simulated.
Each cell holds a different part of the global address space and can execute
different programs that are provided as input to the simulator. All events in
the simulator are assumed to be a multiple of the clock-cycle time (0.1 ns). The
simulator accepts user-defined network topologies, or it can generate regular
grid-based topologies. For simplicity, we use a grid-based topology with a single
1024 node cell and a 3% node defect rate in our evaluation. As long as the
defect rate is low (about 15% or lower), the network topology has little effect on
performance.

5.3 Fibonacci

In this section we consider the simple code that computes the Nth Fibonacci
number. Table IV shows the packet needed to implement Fibonacci for N >= 1
(N is stored at address 0×30), and how the fragments are arranged in memory.
For simplicity, each instruction is a separate fragment. The first packet, starting
at address 0×10, loads the value N (counter) which specifies which Fibonacci
number to compute, and the constants 1 and 0 (pre-loaded into 0×32 and 0×34
to begin with). The fourth instruction decrements the counter and sets the
condition bit in the tail if the counter is zero. The counter is then stored back
at address 0×30. The seventh instruction swaps the first two operands in the
operand stream. The eighth instruction creates a copy of the accumulator at
the end of the operand stream. The ninth instruction (ADD) computes the next
Fibonacci number. If the condition flag in the tail is set, this new computed
value is stored at address 0×36. The two remaining operands are then stored
at locations 0×34 and 0×32. Finally, if the condition flag is not set, we loop
back to the beginning using a CALLZ instruction, creating a new packet. If the
condition flag is set, the instruction is not executed, terminating the program.
Figure 10 illustrates the creation of this packet with a bootstrapping JMP.
In Figure 10(a), we show the bootstrapping packet inserted at the via in the
execution network. This packet is routed along the execution network until it

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 23

Fig. 10. Bootstrapping the fibonacci execution packet with a JMP.

finds a memory port. The JMP instruction in the packet executes at the port and
starts fetching data from location 0×10 (where the Fibonacci code is stored).
The data returned from location 0×10 (Figure 10(b)) is divided into two parts:
(1) data for the packet and (2) next address. The data for the packet (in this case,
a LD opcode) is inserted into the packet and sent out on the execution network.
The next address is used to fetch the next fragment of code (in this case, from
address 0×12). The data returned from location 0×12 (Figure 10(c)) provides
the address for the LD instruction and the address of the next fragment of code.
This process is repeated until we get a data fragment back with 0×00 as the next
address (Figure 10(d)). This indicates that we have finished executing the JMP
instruction. The final packet before execution begins is shown in Figure 10(e).
It is important to note that execution can begin while the JMP instruction is
still executing.

To demonstrate our system operation, we simulate its behavior at the bit-
serial link level executing the above packets. We model a single 32×32 cell with
25% ALU nodes and four corner vias for planar gradients. We assume a ran-
dom distribution of defective nodes, with 3% of all nodes being defective. The
memory system in the cell includes 64 16-bit memory nodes and 80 ports. A sys-
tem using a depth-first execution network would achieve similar performance
(depth-first execution only increases the number of nodes reachable on the ex-
ecution network). The average time per loop iteration (0×10 to 0×36) is 22,300
cycles and it might be possible to reduce this through loop unrolling. However,
only 2,000 of the 22,300 cycles are spent in performing the actual computation.
More than 20,000 cycles are spent in accessing the memory system. Figure 11
illustrates the execution of the program. We take a snapshot of execution be-
fore the first load operation completes. While the absolute performance of this

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



24 • J. P. Patwardhan et al.

Fig. 11. The path of Fibonacci code in one direction through configured network with 1024 nodes
and 3% defects. Unused nodes in the execution network appear faded, defective nodes are omitted.
1: Bootstrap packet injected via; 2: JMP executes at port; 3: LD 0×30 executes at port; 4: LD 0×32
executes at port; 5: LD 0×34 executes at port; 6: DEC at processing node; 7: CMPZ executes at
processing nodes; 8: ST 0×30 executes at port; 9: SWAP executes at processing node; 10: ADD
executes at processing node.

example does not surpass even current CMOS, it serves to demonstrate the
operation of a single cell. The greatest advantage of this technology arises from
the scale of the system.

5.4 String Match

The opportunity for massively parallel computation is tremendous. String
searching is a common operation in many applications (e.g., searching for par-
ticular DNA sequences within a genome). Our string-match program loads a
16-bit key and compares it to all data elements within the cell, and a conditional
store indicates if a match was found. This implementation requires 48 memory

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 25

locations for instructions and 16 for data. Therefore, we can search a 32GB
database by using all 109 cells. The execution time within one cell is 35 ns per
comparison, for a total of 28.5×106 comparisons/sec. The potential for massive
parallelism would be exposed by having each of the 109 cells perform a unique
comparison, yielding an overall rate of 2.85 × 1016 comparisons/sec.

5.5 Discussion

The peak performance of NANA (assuming 1/2 the nodes compute) is signif-
icantly higher than today’s supercomputers. NANA can potentially perform
4.12 × 1021 bitops/sec while the IBM Blue Gene can achieve 4.6×1016 bitops/sec
and the NEC Earth Simulator can achieve a peak of 5.2×1015 bitops/sec. How-
ever, it will be a challenge for NANA to realize this peak performance in prac-
tice. Developing these programs exposes two key limitations of our current
architecture: (1) under-utilization of nodes and network connectivity, and (2)
bottlenecked memory system.

Under-utilization of nodes. One of the key limiting factors to achieving good
performance is the fact that nodes spend only a small fraction of their time
doing useful work. For example, if we are executing 10 arithmetic instructions,
the node that executes the first instruction is doing useful work only when (a)
it is receiving the first instruction and (b) it is receiving its operands for ex-
ecution. Since there are 10 instructions being executed which will require 11
operands (assuming data is pre-loaded), the packet will contain 868 bits (in-
cluding header, instructions, operands, field separators and tail). Out of these,
only 220 bits (header, instruction to be executed, separators, two operands, the
operand separators and tail) are relevant to the execution of the instruction.
Thus, the node is doing “useful” work only when it is dealing with ∼25% of
the bits in the packet. No useful computation is performed by the node in the
remaining time.

The depth-first execution network increases the number of nodes usable dur-
ing execution, but it does not reduce node idle time. The execution network can
be thought of as a pipeline of nodes. The pipeline is most efficient only when it
is full. Similarly, the execution network is fully utilized only when all nodes are
actively executing instructions. This would require the creation of extremely
long packets. However, the longer the packet, the longer it takes for a node to
execute instructions because longer packets typically have longer instruction
and data fields and a node needs to forward the entire packet before it can
handle the next packet. This limits the peak performance of NANA.

Memory system bottleneck. The memory system in NANA has multiple bot-
tlenecks. Because of the way it is designed, it is currently not possible to ex-
ecute store instructions (direct, indirect, or conditional) from a packet before
any load instructions (direct, or indirect). This limits the size and content of
execution packets that can be created. In addition, all memory requests are
serialized through the anchor node. This creates a substantial bottleneck at
the anchor node. There is no easy way of alleviating this bottleneck with-
out significantly adding to the complexity of the system. Finally, our lim-
ited routing capability in the random network limits our ability to build a

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



26 • J. P. Patwardhan et al.

balanced memory network. This often results in unbalanced networks with long
latencies.

Despite its limitations, NANA demonstrates that it is possible to build a
computing system despite the severe technological constraints. As a first step,
NANA does remarkably well. Future designs based on this technology can use
the insights gained from this design. We believe that NANA is a necessary first
step toward exploiting nanotechnology’s potential to overcome the “red brick
wall.”

6. RELATED WORK

This article covers a wide range of topics from novel bottom-up fabrication
techniques and emerging devices through microarchitecture and instruction
set design. There is significant literature on most of these important topics.
However, to keep focus we discuss only the most closely related architecture
work.

The most related work is Dwyer’s proposal to use a DNA guided self-assembly
technique to build a massively parallel computer [Dwyer 2003; Dwyer et al.
2004a, 2004b]. The proposed machine has no communication between process-
ing elements, thus targets problems that are “embarrassingly parallel.” By con-
trast, our work aims to build a more conventional processor. Goldstein’s work on
nanofabrics leverages reconfigurable self-assembled nanoelectronics to provide
a defect tolerant architecture [Goldstein and Budiu 2001]. Resonant tunnel-
ing diodes (two terminal devices) are configured into supernodes of appropriate
functionality after a test phase maps out defective components. The nanofabric
is reconfigured for each program that executes. DeHon presents an architec-
ture that exploits three terminal devices (FETs) by self-assembling arrays of
nanowires and FETs [DeHon 2003]. Sparing and remapping are used to provide
defect tolerance. Other research investigates defect tolerant architectures [Han
and Jonker 2003; Han et al. 2005; Heath et al. 1998; Nikolik et al. 2002; Snider
et al. 2004; Thaker et al. 2005], various array-based nanoarchitectures [Ancona
1996; Beckett and Jennings 2002; Fountain et al. 1998] as well as alternative
emerging nanoelectronic technologies [Gayasen et al. 2005; Niemier and Kogge
2001; Oskin et al. 2002; Tour 2000; Tseng and Ellenbogen 2001], and some of
the challenges that will be faced in dealing with these emerging technologies
and possible means of overcoming those challenges [Fortes 2003; Niemier et al.
2004; Stan et al. 2003].

7. CONCLUSIONS

This article presents an architecture that addresses the challenges posed by
DNA-based self-assembly of carbon nanotubes and other nanotechnologies with
similar characteristics (possibly even scaled CMOS). To overcome (1) limited
node size, (2) random interconnection of nodes, and (3) a high defect rate, we
developed an active-network architecture with an accumulator-based ISA. This
architecture enables execution packets to search through a sea of heterogeneous
nodes for the functionality they need, while avoiding defective nodes. We use an
initial configuration phase to impose some limited structure on the computing

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 27

substrate, particularly for routing and memory allocation. We simulate this
architecture running simple programs to demonstrate its viability, and provide
preliminary performance numbers. While this architecture is only a relatively
unoptimized first step, it addresses some of the key challenges in this class of
nanotechnology and it highlights the technology’s architectural implications.
There is a significant amount of future work, including fabrication, layout, ISA
design, supporting speculation and parallelism, etc.

REFERENCES

ANCONA, M. G. 1996. Systolic processor designs using single-electron digital circuits. Superlat-
tices and Microstructure 20, 4.

BACHTOLD, A., HADLEY, P., NAKANISHI, T., AND DEKKER, C. 2001. Logic circuits with carbon nanotube
transistors. Science 294 (Nov.), 1317–1320.

BECKETT, P. AND JENNINGS, A. 2002. Toward nanocomputer architecture. In Proceedings of the 7th
Asia-Pacific Computer Systems Architecture Conference. 141–150.

BRAUN, E., EICHEN, Y., SIVAN, U., AND GDALYAHU, B.-Y. 1998. DNA-templated assembly and electrode
attachment of a conducting silver wire. Nature 391, 775–778.

BURKE, P. J. 2003. An RF circuit model for carbon nanotubes. IEEE Trans. Nanotech 2, 1, 55–58.
CASTRO, M. AND LISKOV, B. 1999. Practical byzantine fault tolerance. In Proceedings of the 3rd

USENIX Symposium on Operating Systems Design and Implementation.
CAMPBELL-KELLY, M. 1998. Programming the edsac: Early programming activity at the University

of Cambridge. IEEE Annals History Compt. 20, 4, 46–67.
CUI, Y. AND LIEBER, C. M. 2001. Functional nanoscale electronic devices assembled using silicon

nanowire building blocks. Science 291 (Feb.), 851–853.
CULBERTSON, W. B., AMERSON, R., CARTER, R. J., KUEKES, P., AND SNIDER, G. 1996. The teramac custom

computer: Extending the limits with defect tolerance. In Proceedings of the IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems. (Nov.).

DALAL, Y. K. AND METCALFE, R. M. 1978. Reverse path forwarding of broadcast packets. Commun.
ACM. 21, 12 (Dec.), 1040–1048.

DALLY, W. J. 1992. Virtual channel flow control. IEEE Trans. Parallel and Distributed Systems
3, 2 (Mar.), 194–205.

DEHON, A. 2002. Array-based architecture for molecular electronics. In Proceedings of the 1st
Workshop on Non-Silicon Computation (NSC-1) (Feb.).

DEHON, A. 2003. Array-based architecture for FET-based, nanoscale eletronics. IEEE Trans.
Nanotech. 2, 1 (Mar.), 23–32.

DÜRKOP, V., GETTY, S. A., COBAS, E., AND FUHRER, M. S. 2004. Extraordinary mobility in semicon-
ducting carbon nanotubes. Nano Letters 4, 1, 35–39.

DWYER, C., GUTHOLD, M., FALVO, M., WASHBURN, S., SUPERFINE, R., AND ERIE, D. 2002. DNA func-
tionalized single-walled carbon nanotubes. Nanotech. 13, 601–604.

DWYER, C. 2003. Self-Assembled Computer Architecture: Design and Fabrication Theory. PhD
thesis, University of North Carolina, May.

DWYER, C., VICCI, L., POULTON, J., ERIE, D., SUPERFINE, R., WASHBURN, S., AND TAYLOR, R. M. 2004.
The design of DNA self-assembled computing circuitry. IEEE Trans. VLSI 12 (Nov.), 1214–1220.

DWYER C., CHEUNG, M., AND SORIN, D. J. 2004. Semi-Empirical spice models for carbon nanotube
FET logic. In Proceedings of the 4th IEEE Conference on Nanotechnology (Aug.).

DWYER, C., JOHRI, V., PATWARDHAN, J. P., LEBECK, A. R., AND SORIN, D. J. 2004. Design tools for
self-assembling nanoscale technology. Institute of Physics Nanotech. 15, 9 (Sept.).

DWYER, C., POULTON, J., TAYLOR, R., AND VICCI, L. 2004d. DNA self-assembled parallel computer
architectures. Nanotech. 1688–1694.

DWYER, C., PARK, S. H., LABEAN, T., AND LEBECK, A. 2005. The design and fabrication of a fully
addressable 8-tile DNA lattice. In Foundations of Nanoscience: Self-Assembled Architectures and
Devices. 187–191.

FORTES, J. B. 2003. Future challenges in vlsi system design. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI (Feb.), 5–7.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



28 • J. P. Patwardhan et al.

FOUNTAIN, T. J., DUFF, M. J. B., CRAWLEY, D. G., TOMLINSON, C. D., AND MOFFAT, C. D. 1998. The
use of nanoelectronic devices in highly-parallel computing systems. IEEE Transactions on VLSI
Systems 6, 1, 31–38.

FUHRER, M. S., NYGARD, J., SHIH, L., FORERO, M., YOON, Y.-G., MAZZONI, M. S. C., CHOI, H. J., IHM,
J., LOUIE, S. G., ZETTLE, A., AND MCEUEN, P. L. 2001. Crossed nanotube junctions. Science 288
(Apr.), 494–497.

GAYASEN, A., VIJAYKRISHNAN, N., AND IRWIN, M. J. 2005. Exploring technology alternatives for nano-
scale FPGA interconnects. In Proceedings of the 42nd Annual Design Automation Conference
(DAC-2005), (June).

GLASS, C. J. AND NI, L. M. 1992. The turn model for adaptive routing. In Proceedings of the 19th
Annual International Symposium on Computer Architecture (May), 278–287.

GOLDSTEIN, S. C. AND BUDIU, M. 2001. Nanofabrics: Spatial computing using molecular electronics.
In Proceedings of the 28th Annual International Symposium on Computer Architecture (July),
178–191.

HAN, J. AND JONKER, P. 2003. A defect- and fault-tolerant architecture for nanocomputers. Nan-
otech. 14 (Jan.), 224–230.

HAN, J., GAO, J., QI, Y., JONKER, P., AND FORTES, J. A. B. 2005. Toward hardware-redundant,
fault-tolerant logic for nanoelectronics. IEEE Design & Test of Computers 22, 4 (Apr.), 328–
339.

HAZANI, M., HENNRICH, F., KAPPES, M., NAAMAN, R. N., PELED, D., SIDOROV, V., AND SHVARTS, D. 2004.
DNA-mediated self-assembly of carbon nanotube-based electronic devices. Chemical Physics Let-
ters 391, 389–392.

HEATH, J. R., KUEKES, P. J., SNIDER, G. S., AND WILLIAMS, R. S. 1998. A defect-tolerant computer
architecture: Opportunities for nanotechnology. Science. 280 (June), 1716–1721.

HUANG, Y., DUAN, X., CUI, Y., LAUHON, L. J., KIM, K.-H., AND LIEBER, C. M. 2001. Logic gates and
computation from assembled nanowire building blocks. Science 294 (Nov.), 1313–1317.

INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. 2000. Directed diffusion: A scalable and
robust communication paradigm for sensor networks. Mobile Comput. Networking, 56–
67.

JAVEY, A., GUO, J., FARMER, D. B., WANG, Q., AND WANG, D., 2004. Carbon nanotube field-effect
transistors with integrated ohmic contacts and high-K gate dielectrics. Nano Letters 3, 447–450.

JOHNSON, D. B. AND MALTZ, D. A. 1996. Dynamic source routing in ad hoc wireless networks. In
Mobile Computing, vol. 353. (Imielinski and Korth, eds.). Kluwer, Amstredam.

KIM, H.-S. AND SMITH, J. E. 2002. An instruction set and microarchitecture for instruction level
distributed processing. In Proceedings of the 29th Annual International Symposium on Computer
Architecture (May).

KIM, H.-S. AND SMITH, J. E. 2003. Dynamic binary translation for accumulator-oriented archi-
tectures. In Proceedings of the International Symposium on Code Generation and Optimization
(CGO) 2003 (Mar.), 25–35.

KIM, B. M., BRINTLINGER, T., COBAS, E., FUHRER, M. S., ZHENG, H., YU Z., DROOPAD, R., RAMDANI, J., AND

EISENBEISER, K. 2004. High-performance carbon nanotube transistors on SrTiO3 Si substrates.
Applied Physics Letters 84, 11, (Mar.).

LAVINGTON, S. H. 1978. The manchester Mark 1 and Atlas: A historical perspective. Communi-
cations of the ACM 21, 1, 4–12.

LIU, D., PARK, S.-H., REIF, J. H., AND LABEAN, T. H. 2004. Dna nanotubes self-assembled from TX
tiles as templates for conductive nanowires. In Proceedings of the National Academy of Science
101, 3, 717–722.

MARTIN, B. R., DERMODY, D. J., REISS, B. D., FANG, M., LYON, L. A., NATAN, M. J., AND MALLOUK, T. E.
1999. Orthogonal self-assembly on colloidal gold-platinum nanorods. Advanced Materials 11,
12 (Aug.), 1021–1025.

MCEUEN, P. L., FUHRER, M. S., AND PARK, H. 2002. Single-walled carbon nanotube electronics.
IEEE Trans. Nanotech. 1, 1 (Mar.), 78–85.

NIEMIER, M. T. AND KOGGE, P. M. 2001. Exploring and exploiting wire-level pipelining in emerging
technologies. In Proceedings of the 28th Annual International Symposium on Computer Archi-
tecture, (July), 166–177.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



NANA: A Nano-Scale Active Network Architecture • 29

NIEMIER, M. T., RAVICHANDRAN, R., AND KOGGE, P. M. 2004. Using circuits and systems-level re-
search to drive nanotechnology. In Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers and Processors (ICCD) (Oct.), 302–309.

NIKOLIC, K., SADEK, A., AND FORSHAW, M. 2002. Fault-tolerant techniques for nanocomputers. Nan-
otech. 13, 357–362.

OSKIN, M., CHONG, F. T., AND CHUANG, I. 2002. A practical architecture for reliable quantum com-
puters. IEEE Computer (Jan.), 79–87.

PARK, S. H., PISTOL, C., AHN, S. J., REIF, J. H., LEBECK, A. R., DWYER, C. L., AND LABEAN, T. H.
2006. Finite-size, fully-addressable DNA tile lattices formed by hierarchical assembly proce-
dures. Angewandte Chemie 45 (Jan.), 735–739.

PATWARDHAN, J. P., DWYER, C., LEBECK, A. R., AND SORIN, D. J. 2004. Circuit and system architecture
for DNA-guided self-assembly of nanoelectronics. In Foundations of Nanoscience: Self-Assembled
Architectures and Devices. 344–358.

PATWARDHAN, J. P., DWYER, C., LEBECK, A. R., AND SORIN, D. J. 2005. Evaluating the connectivity
of self-assembled networks of nano-scale processing elements. In Proceeding of the IEEE Inter-
national Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures (NANOARCH
’05), (May), 2.1–2.8.

SCHROEDER, M. D., BIRRELL, A. D., BURROWS, M., MURRAY, H., NEEDHAM, R. M., RODEHEFFER, T. L.,
SATTERTHWAITE, E. H., AND THACKER, C. P. 1991. Autonet: A high-speed, self-configuring local
area network using point to point links. IEEE Journal on Selected Areas in Communications 9,
8, (Oct.).

SEEMAN, N. C. 1999. Dna engineering and its application to nanotechnology. Trends in Biotech
17, 437–443.

SKINNER, K., CARROLL, R. L., WASHBURN, S., AND DWYER, C. L. 2005. Nanowire transistors, gate
electrodes, and their directed self-assembly. In Proceedings of the 72nd Southeastern Section of
the American Physical Society (SESAPS) (Nov.).

SNIDER, G., KUEKES, P., AND WILLIAMS, R. S. 2004. CMOS-like logic in defective, nanoscale cross-
bars. Nanotech. 15, 881–891.

STAN, M. R., FRANZON, P. D., GOLDSTEIN, S. C., LACH, J. C., AND ZIEGLER, M. M. 2003. Molecular
electronics: From devices and interconnect to circuits and architecture. In Proc. IEEE. 91, (Nov.),
1940–1957.

STRANO, M. S., DYKE, C. A., USREY, M. L., BARONE, P. W., ALLEN, M. J., SHAN, H. W., KITTRELL, C., HAUGE,
R. H., TOUR, J. M., AND SMALLEY, R. E. 2003. Electronic structure control of single-walled carbon
nanotube functionalization. Science 301 (Sept.), 1519–1522.

TANS, S. J., VERSCHUEREN, A. R. M., AND DEKKER, C., 1998. Room-temperature transistor based on
a single carbon nanotube. Nature 393, 49–52.

TENNENHOUSE, D. L. AND WETHERALL, D. J. 1996. Towards an active network architecture. Com-
puter Communication Review 26, 2.

THAKER, D. D., IMPENS, F., CHUANG, I. L., AMIRTHARAJAH, R., AND CHONG, F. T. 2005. Recursive tmr:
Scaling fault tolerance in the nanoscale era. IEEE Design & Test of Comput. 22, 4 (Apr.), 298–305.

TOUR, J. M. 2000. Molecular electronics. Synthesis and testing of components. Accounts of Chem-
ical Research 33, 11, 791–804.

TSENG, G. Y. AND ELLENBOGEN, J. C. 2001. Toward nanocomputers. Science 294 (Nov.), 1293–1294.
BERKEL, K. V. AND BINK, A. 1996. Single-track handshake signaling with application

to micropipelines and handshake circuits. In Procceding of the Seconds International
Symposium on Advanced Research in Asynchronous Circuits and Systems. (Mar.), 122–
133.

WIND, S. J., APPENZELLER, J., MARTEL, R., DERYCKE, V., AND AVOURIS, P. 2002. Vertical scaling of
carbon nanotube field-effect transistors using top gate electrodes. Applied Physics Letters 80
(May), 3817–3819.

WINFREE, E., LIU, F., WENZLER, L. A., AND SEEMAN, N. C. 1998. Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539.

YAN, H., LABEAN, T. H., FENG, L., AND REIF, J. H. 2003a. Directed nucleation assembly of barcode
patterned DNA lattices. Proceedings of the National Academy of Sciences 100, 14 (July), 8103–
8108.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.



30 • J. P. Patwardhan et al.

YAN, H., PARK, S. H., FINKELSTEIN, G., REIF, J. H., AND LABEAN, T. H. 2003b. DNA templated self-
assembly of protein arrays and highly conductive nanowires. Science 301, 5641 (Sept.), 1882–
1884.

ZHENG, M., JAGOTA, A., SEMKE, E. D., DINER, B. A., MCLEAN, R. S., LUSTIG, S. R., RICHARDSON, R. E.,
AND TASSI, N. G. 2003. DNA-assisted dispersion and separation of carbon nanotubes. Nature
Materials 2 (May), 338–342.

Received August 2005; revised February 2006; accepted February 2006

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 1, January 2006.


