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DNA-based self-assembly of nanoelectronic devices is 
an emerging technology that has the potential to enable tera- 
to peta-scale device integration. However, self-assembly cur-
rently is limited to manufacturing small computing blocks 
(nodes) which must then be interconnected to build a larger 
computing system. In this paper, we study node networks cre-
ated by varying control over three aspects of the self-assem-
bly process (node placement, node orientation, and inter-
node link creation). In particular, we examine the tradeoff 
between node complexity and control required during self-
assembly to maximize the number of connected nodes in the 
network. As the level of control decreases, we find that node 
communication hardware needs to be augmented to allow 
link sharing between several transceivers. This also results 
in better network connectivity in the presence of defective 
nodes and links. Finally, we show that for a data parallel 
architecture with enough available nodes, the specific net-
work topology has a negligible effect on performance. 

1  Introduction
Self-assembly of nanoelectronic devices has the potential 

to emerge as a lower cost alternative to top-down manufac-
turing. DNA-based self-assembly [14] is a bottom-up manu-
facturing process that uses the precise binding rules of DNA 
with nanoscale devices to build computing systems. Previ-
ously, we proposed a circuit architecture [9] to place elec-
tronic circuits on a DNA lattice. A key requirement of the 
process is the ability to control the placement of electronic 
devices (e.g., self-assembled nanowire transistors [16]) at 
specific points on a DNA scaffold [2,8,13,15]. This enables 
building DNA scaffolded electronic circuits (nodes) with 
limited storage, compute and communication capabilities 
which could then be used to build computing systems 
[10,12]. Self-assembly is currently limited to producing 
small sized DNA lattices thus limiting circuit size. However, 
the parallel nature of self-assembly enables the construction 
of a large number (~109-1012) of nodes that may be linked 
together by self-assembled conducting nanowires [19]. 
These self-assembled computing systems assume either a 
mesh or a random network of nodes. However, these two 
topologies lie at opposite ends of a spectrum defined by the 
amount of control exercised over the self-assembly process. 

In this paper, we study network properties as we exercise 
varying degrees of control over how nodes are placed and 

assembly. We examine a range of networks, from a mesh 
(full control) to a random network of nodes (no control). For 
each network type, we determine the connectivity of the net-
work, and the need for any additional hardware in each 
node’s communication logic to maximize the number of con-
nected nodes. We evaluate the performance of a data parallel 
architecture [10] built on top of these networks using a sim-
ple benchmark and find that system performance is indepen-
dent of the underlying network, as long as sufficient nodes 
are available for computation. Finally, we show that the 
introduction of defects in nodes and links can exacerbate the 
poor connectivity found in networks with low control during 
self-assembly.

Recently, researchers have been actively developing 
nanoelectronic devices and architectures that could poten-
tially replace CMOS in the future. Most designs either 
assume the ability to create regular structures [1,4], or 
unstructured interconnect [18] (within a computing block). 
Since the networks we study are highly dependent on physi-
cal node locations, we cannot leverage the large body of 
work on generating [17] and analyzing internet topologies 
[7]. Future developments that allow embedding radio trans-
ceivers in nodes could potentially allow researchers to lever-
age this work. To our knowledge, ours is the first attempt at 
characterizing networks of nanoscale devices.

The rest of this paper is organized as follows. First, we 
provide a brief overview of our node and system architecture 
(Section 2). Next, we describe the different networks that are 
created as we exercise various levels of control over self-
assembly (Section 3). Finally, we evaluate the connectivity 
of these networks with and without defects, and determine 
their impact on system performance (Section 4).

2  Node and System Architecture
Each node is assumed to have basic functionality that 

enables the organization of the network of nodes into a high-
performance computing system. A detailed description of 
node and system architecture can be found in [10] and we 
summarize the relevant details here.

Node Architecture. Each node has three primary compo-
nents: a) communication logic, b) configuration logic, and c) 
compute logic. The communication logic has four transceiv-
ers that allow the node to communicate with other nodes 
over single wire links. In case more than two transceivers 
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share a single wire, our baseline transceiver model imple-
ments an infinite backoff mechanism that permits only two 
active transceivers on that link. When the node is powered up 
each component undergoes a simple test to ensure correct 
operation [11]. If the transceivers pass this test they attempt 
to signal neighboring nodes over their wire link. If a trans-
ceiver detects more than one other transceiver signal over the 
link, it shuts down. This can potentially affect network con-
nectivity in cases where the transceiver that shuts down pro-
vides access to a region of the network. 

System Architecture. To maximize node utilization we 
implement a data parallel architecture on the network of 
nodes. Since one node does not have the necessary compute 
power, we logically group together sets of nodes to form 
SIMD style processing elements (PEs) connected in a logical 
ring [10]. This system architecture supports a data parallel 
programming model. The topology of the underlying net-
work affects the logical organization of PEs in the logical 
ring, which in turn can have an effect on system perfor-
mance. In Section 4.3 we evaluate the performance of one 
data parallel program on various networks.

3  Networks of Self-Assembled Processing 
Elements

The topology of the network of nodes depends on the 
level of control exercised during node self-assembly, and 
during the creation of inter-node links. As self-assembly 
technology matures, it might be possible to create three-
dimensional topologies as well, but we limit ourselves to the 
analysis of two-dimensional topologies in this work. We 

explore topologies created as we vary control over three 
aspects of the manufacturing process:

• placement of nodes (P)
• orientation of nodes (O)
• creation of inter-node links (I)

In each case, to limit the parameter space to be explored, 
we consider two alternatives: 1) full control, and 2) no con-
trol. This results in eight network types, ranging from a ran-
dom planar network to a mesh. Table 1 lists the networks by 
the type of control necessary to create them and Figure 1
shows examples of these networks. The goal is to identify 
the level of control necessary to maximize the number of 
connected nodes. Next, we describe how we could poten-
tially control P, O or I, and the implications of that control on 
the number of connected nodes in the network.

TABLE 1. Classification of network topologies 
based on control over P, O and I.

Name
Control

ExamplePlacement 
(P)

Orientation 
(O)

Link 
(I)

N0 No No No Figure 1a

N1 No No Yes Figure 1b

N2 No Yes No Figure 1c

N3 No Yes Yes Figure 1d

N4 Yes No No Figure 1e

N5 Yes No Yes Figure 1f

N6 Yes Yes No Figure 1g

N7 Yes Yes Yes Figure 1h

Network 0 Network 1 Network 2 Network 3
P=N, O=N, I=N P=N, O=N, I=Y P=N, O=Y, I=N P=N, O=Y, I=Y

Network 7Network 5Network 4 Network 6
P=Y, O=Y, I=YP=Y, O=Y, I=NP=Y, O=N, I=YP=Y, O=N, I=N

(e)

(a) (b)

(f) (h)

(d)(c)

(g)

FIGURE 1. Examples of eight networks with varying control over placement (P), orientation (O), and inter-node link creation (I). 
(a-d): no control over P - nodes can get isolated due to large distances, control over O and I improve connectivity, (e-h): control 

over P improves connectivity, but can still result in isolated nodes without control over O and I.
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Placement (P). Control over node placement enables uni-
formly spaced nodes. We expect uniform spacing to improve 
network connectivity by reducing the number of nodes that 
require long links to connect to the rest of the network. Con-
trol over node placement can be achieved in two ways: 1) 
pick and place techniques, and 2) placing DNA tags on the 
underlying substrate to control the locations where nodes 
self-assemble. While each node is large enough to enable the 
use of pick and place strategies, they are not practical for 
systems with a large number of nodes. We can minimize 
external intervention by placing DNA tags on the substrate to 
initiate node growth at tag locations. The greater the number 
of tags per node, the greater the chance that nodes form at 
the right locations. However, increasing the number of tags 
increases the effort required in preparing the substrate for 
self-assembly. Examples of the network types created with 
node placement can be found in Figure 1e-h.

Orientation (O). Control over orientation aligns node 
faces, which can increase the chances of links intersecting 
(as depicted in Figure 1c, Figure 1d, Figure 1g, and 
Figure 1h), potentially improving network connectivity. The 
techniques to control node placement could also be extended 
to control node orientation by increasing the number of tags 
per node. In addition to using multiple tags on the substrate, 
nodes could be aligned using an external electric field, or 
using fluid flow [5].

Inter-node Link Creation (I). Control over inter-node 
link creation implies control over the shape of links. Without 
creating a mesh network (and linear links), there is still a 
chance that more than two transceivers are connected by a 
link. Linear links cannot loop back on themselves and are 
useful in improving network connectivity. Researchers have 
demonstrated the creation of mostly linear wire structures 
[3,6]. Networks with linear links are shown in Figure 1b, 
Figure 1d, Figure 1f, and Figure 1h.

Maximizing Reachable Nodes. In any non-mesh topol-
ogy, more than two links (and transceivers) can potentially 
be connected. The baseline node design deals with such links 
by implementing an inifinite backoff mechanism (see 
Section 2). However, disabling a transceiver can partition the 
network. This problem can be mitigated by treating each link 
like a shared medium (bus). However, this requires extend-
ing transceiver functionality to enable arbitration for link 
access, as well as the use of source/destination identifiers for 
each transfer on the link. We evaluate the potential benefits 
of one method for link sharing in Section 4. As self-assem-
bly matures, it might be possible to create larger nodes that 
incorporate this extra functionality.

4  Experimental Setup and Evaluation
We begin with a description of our custom network 

topology generator and the methodology used to model infi-

nite backoff and link sharing between transceivers 
(Section 4.1). The goal of this evaluation is to study the con-
nectivity characteristics of each network type and determine 
if the baseline node design needs to be augmented to main-
tain good system connectivity (Section 4.2). We also want to 
determine the impact of the different networks on system 
performance (Section 4.3). Finally, we want to study the 
effect of node and link defects on connectivity (Section 4.4).

4.1  Topology Generator
The topology generator’s inputs include the number of 

nodes, total area, type of control over placement (P), orienta-
tion (O), interconnect (I), minimum distance between nodes, 
and an optional parameter that decelerates interconnect 
growth with time. It also accepts a random seed which 
allows the creation of distinct topologies. For networks with 
no control over node placement (P=N in Figure 1), it gener-
ates a random location for the node and places it there if all 
constraints are met (no overlap, minimum distance, within 
area). The program attempts to place each node a maximum 
of 106 times. For networks with control over node placement 
(P=Y in Figure 1), a simple check of the area and number of 
nodes allows the program to determine if the nodes fit. If 
O=N, each node is rotated (about its center) through a ran-
dom angle before being placed.

After placing all nodes, the simulator models link 
growth. For random growth (I=N in Figure 1) we use a ran-
dom number generator and a probability distribution func-
tion (PDF) for the angle and distance by which the link 
grows to perform a directed random walk. If we model linear 
growth (I=Y in Figure 1), we grow the link by a random 
length (<=50nm). Each link is iteratively grown by this ran-
dom length until one of two conditions is satisfied: 1) it col-
lides with another node or link, or 2) the simulation 
terminates as a user-defined condition is satisfied. Once 
growth of all links terminates, the simulator generates a 
graph corresponding to the node network created by the links 
and generates connectivity statistics for the graph. Next, we 
describe how we modify the generated graph to model infi-
nite backoff or shared links.

Modeling Infinite Backoff. To model infinite backoff we 
identify links with more than two transceivers, randomly 
pick two transceivers to be active, and disconnect the rest. 
There are multiple ways of picking a pair of transceivers and 
we generate multiple networks by randomly picking differ-
ent pairs of transceivers.

Modeling Links as Buses. We model one possible imple-
mentation of shared links, where the N transceivers con-
nected by a single link are divided into pairs that 
communicate with each other. If N is odd, one transceiver is 
not used. There are multiple ways in which the transceivers 
can be paired and we try to capture the effect of such pairing 
by creating multiple networks with different transceiver 
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pairs. Next, we evaluate each network type to determine the 
fraction of reachable nodes for a range of network sizes.

4.2  Reachable Nodes
For each of eight network types, we generate 100 topolo-

gies for different network sizes. We use network sizes of 
10,000 nodes and the smallest square mesh required to run 
8x8 (1,296 nodes), 16x16 (4,900 nodes) and 32x32 (21,025 
nodes) matrix multiplication. In Figure 2, we plot the size of 
the largest connected group of nodes as a fraction of total 
nodes for networks with 21,025 nodes (we get similar results 
for other network sizes). For each network type, we plot 
three bars, the first representing the unconstrained network, 
the second corresponding to links modelled as buses, and the 
third with transceivers implementing infinite backoff. From 
Figure 2, we see that if connectivity is unconstrained, all net-
works are able to connect in excess of 95% of the nodes. 
However, when modeling realistic hardware the fraction of 
reachable nodes decreases. The decrease is small when links 
are treated as shared media. However, if we model infinite 
backoff on links, for networks without control over place-
ment and orientation, less than 50% nodes are reachable.

We plot the average number of transceivers connected 
per link in Figure 3. For a fully connected network of nodes 
there would be two transceivers per link and 1.97 for a mesh 
since the boundary transceivers are disconnected. For the 
unconstrained networks the value is over 2 indicating that 
multiple transceivers share links. The value drops to about 
1.7 for shared links and about 1.55 for links with infinite 
backoff. This implies that only 55% of all links are con-
nected to a second transceiver if we implement infinite back-
off, which explains the poor network connectivity.

This highlights the tradeoff between simple nodes and 
the degree of control required during self-assembly to 
achieve good network connectivity. Simpler nodes require 
regular topologies to achieve good connectivity. If nodes can 
implement mechanisms to allow more than two transceivers 
to share a single link, the system is well connected even if 
there is no control over the manufacturing process. Next, we 

examine the effect of the underlying network topology on 
system performance.

4.3  System Performance
In an ideal system, performance would be independent of 

network topology. To quantify the effect of topology on sys-
tem performance, we measure the running time of an appli-
cation (matrix multiplication) on different networks using a 
simualtor for our data parallel architecture. We measure pro-
gram run time for networks with at most two transceivers 
sharing links (infinite backoff), or pairs of transceivers shar-
ing links (links as buses). We simulate matrix multiplication 
for three matrix sizes - 8x8, 16x16 and 32x32. We find that 
as long as enough PEs can be configured in the network there 
is very little variation in program running time. Detailed 
results are omitted due to space constraints.

4.4  Effect of Defects
To study the effect of defects on network connectivity, 

we apply a node failure model [11] with a range of device 
reliabilities. Table 2 lists the percentage of nodes that are 
reachable in a network of 21,025 nodes for shared links. The 
numbers in parantheses are the percentage of reachable 
nodes when modeling infinite backoff. We do not show this 
number if it is less than 10%. We see that the percentage of 
reachable nodes drops rapidly as device reliability or control 
over self-assembly decreases. System connectivity decreases 
since some regions get disconnected due to the loss of criti-
cal nodes/links to defects. This is reflected by a drop in the 
number of transceivers per link (between 22-50% drop) as 
the device reliability decreases from 100% to 99.99%. 

The results highlight the benefit of link sharing over infi-
nite backoff. Link sharing allows a larger number of nodes to 
remain connected as device reliability decreases. This is true 
even for configurations with low control during self-assem-
bly (N0-N3). We can draw two conclusions from these 
results: 1) if device reliability is lower than 99.999%, we 
either need to control placement and orientation during self-
assembly, or we need to implement link sharing, to maintain 
network connectivity, and 2) controlling placement and ori-

FIGURE 2. Fraction of Reachable Nodes
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FIGURE 3. Transceivers Per Link
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entation has a greater effect on network connectivity than 
link sharing. The two techniques can be combined to achieve 
greater effect.

5  Conclusions
In this paper, we evaluate the characteristics of a class of 

network topologies that could be created by exercising vary-
ing degrees of control during the self-assembly of simple 
nodes. The evaluation highlights the tradeoff between node 
complexity and the amount of control required during self-
assembly to maximize the number of connected nodes in the 
network. We also see that so long as the network has enough 
nodes, system performance is not affected by the type of 
configuration created by self-assembly. Finally, we see that 
introducing defects has a greater effect on networks with a 
lower degree of control during self-assembly. However, this 
can be mitigated to some extent by allowing more than two 
transceivers to share a link.
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% Device 
Reliability

Configuration

N0 N1 N2 N3 N4 N5 N6 N7

99.990 3.8 4.9 3.9 2.5 3.4 6.6 86 (84) 90 (90)

99.993 18 26 19 7.2 18 38 91 (91) 93 (93)

99.996 73 73 73 31 72 72 95 (95) 96 (96)

99.999 88 88 89 78 88.6 (11.7) 84.7 (35.5) 99 (99) 99 (99)

100.00 91 91 92 84 92 (19.5) 87 (50) 100 (100) 100 (100)
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