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1  Introduction
Manufacturing defects, power density, process variability, 

transient faults, bulk silicon limits, rising test costs and multibil-
lion dollar fabrication facilities are some of the challenges facing 
the continued scaling of CMOS. While architectural modifications 
(e.g., multicore) can provide some short-term relief, the semicon-
ductor industry recognizes the importance of these issues and the 
need to explore long term alternatives to CMOS devices and fabri-
cation techniques [5]. One promising alternative is DNA-based 
self-assembly [11] of nanoscale components using inexpensive 
laboratory equipment to achieve tera to peta-scale integration. 
Although much of this technology is in its infancy (i.e., demon-
strated in research lab experiments), by studying its potential uses 
for building computing systems, architects can gain a deeper 
understanding of its limitations and opportunities while providing 
important feedback to the scientists developing the new technolo-
gies. While our work is motivated by DNA-based self-assembly, it 
is applicable to any technology with similar characteristics (e.g., 
scaled CMOS with high process variability, high defect rates and 
point-to-point links between relatively small compute nodes).

We previously proposed an assembly process [9] to place elec-
tronic circuits on a DNA grid [14,15]. DNA-based fabrication pro-
duces precise control within a small area (e.g., 9 µm2) enabling the 
construction of a large number (~109-1012) of small nodes (com-
putational circuits with ~104 transistors) that can be linked 
together using self-assembly. This produces a random network of 
nodes, due to the lack of control over placement and orientation of 
nodes, that contains defective nodes and links. A computing sys-
tem built from this random network must: a) tolerate node and 
interconnect defects, b) not rely on underlying network structure, 
c) compose more powerful computational blocks from simple 
nodes, d) minimize communication overheads, and e) achieve per-
formance that is at least comparable to future CMOS based sys-
tems. Several research projects have examined building computing 
systems with a subset of these goals, including self-organization 
[1,13], routing and resiliency in the face of defects [1,4] and the 
ability to compose complex computational units from simpler 
blocks [7], but we face added challenges because of the extremely 
limited computational capabilities available in nodes. We previ-
ously developed the nanoscale active network architecture 
(NANA) [8], which is a general purpose architecture designed with 
a similar set of goals, but it fails to match the performance of con-
ventional CMOS systems.

We present a SIMD architecture designed to address these 
challenges. The fundamental building block in our architecture is a 
relatively small node (e.g., 1-bit ALU with 32 bits of storage and 
communication support for four neighbors) that operates asyn-
chronously. A configuration phase at startup isolates defective 
nodes and allows groups of nodes to self-organize into SIMD pro-
cessing elements (PEs). Simulations using conservative estimates 

for node size and device speed show that the proposed design can 
match the performance of aggressively scaled architectures for 8 
out of 9 benchmarks tested. Furthermore, this performance is 
achieved with a very low power density of 6.5 W/cm2 (vs. >75 
W/cm2 for modern cores) while conservatively assuming that 
about 90% of the devices in the system switch every nanosecond. 
Finally, we show that our system can tolerate up to 30% defective 
nodes. Our results demonstrate the potential of this technology for 
building high performance architectures despite high defect rates 
and loss of precise control during fabrication. Further improve-
ments are possible as the technology scales to allow more complex 
nodes, better inter-node connectivity, and faster devices.

2  System Architecture
To efficiently utilize large numbers (>109-1012) of nodes we 

implement a SIMD architecture and focus on data parallel work-
loads. Our proposed system - called the “Self-organizing SIMD 
Architecture” (SSA) - supports a three operand register-based ISA 
with predicated execution and explicit PE-Shift instructions to 
move data between PEs and communicate with an external con-
troller. Each SSA instruction has between 39 and 44 bits and con-
tains: 1) a 16-bit fully-decoded opcode microinstruction, 2) a 20-
bit register specifier microinstruction, and 3) a 3-bit “synch” 
microinstruction with an optional 5-bit synch repeat counter. Each 
microinstruction can be independently broadcast and includes 2 
bits of control overhead to select a control register as a destination. 
We assume that the external controller has access to a conventional 
memory system.

Careful node design is critical in maximizing system perfor-
mance. Due to limited node size, designing the node architecture 
involves a trade-off between maximizing functionality (compute, 
communicate, and self-organize) and performance while minimiz-
ing circuit size. To avoid the area and power overhead of routing 
clock signals and to mitigate the effects of device parameter varia-
tion, instruction execution and sequencing within a node are asyn-
chronous. Each node has a 1-bit ALU with a small register file and 
connects to other nodes with (up to four) single wire links. Each 
link supports low bandwidth asynchronous communication that 
transfers 1 data bit per handshake. To support deadlock-free rout-
ing, we add support for three virtual channels (1 bit each). The ran-
dom network of nodes is organized at two levels during a 
configuration phase. First, since a node is too small to hold a PE, 
we group sets of nodes to form a PE. Second, PEs are linked in a 
logical ring providing programmers a simplified system view to 
reason about inter-PE communication. Communication with exter-
nal circuitry occurs through metal junctions (“vias”) which are 
controlled by “anchor” nodes. Figure 1 shows a small random net-
work configured to form three 8-bit PEs.

The configuration process, initiated from an anchor, maps out 
defective nodes and connects functional nodes in a broadcast tree 
using a variant of the “reverse path forwarding” (RPF) algorithm 



[3,10]. The system can be configured in two ways: a) as a mono-
lithic system, all PEs on one logical ring (one “cell”), or b) as mul-
tiple, independent logical rings (multiple “cells”). In case (b), we 
achieve space partitioning by running the configuration algorithm 
from multiple anchors to create independent cells.

3  Evaluation
We evaluate SSA using a custom, event-driven simulator and 

use results from simulating smaller systems to extrapolate the 
behavior of larger systems. The simulator models each node in 
detail to obtain a detailed view of system execution. The latency of 
all activity in a node is a multiple of a base “time quantum”, which 
we conservatively assume to be 1 nanosecond. Experimental 
devices are expected to operate at frequencies exceeding 100 GHz 
[2] with demonstrated frequencies over 10GHz [12] (time quantum 
of 0.1 ns), and asynchronous handshakes at high speeds have been 
demonstrated [6]. We compare the performance of SSA to a Pen-
tium 4 (P4), an ideal out-of-order superscalar (I-SS), an ideal 16-
way CMP (16-CMP) and an ideal implementation of SSA (I-SSA) 
that uses the same instruction set, but assumes unit instruction exe-
cution latencies, and no communication overhead. We use nine 
benchmarks - matrix multiplication, image filters (3), sorting, 
searching, bin-packing and data encryption (2).

We find that SSA achieves good performance on benchmarks 
that have data parallelism (all except sort). For a configuration with 
more than 64K PEs, SSA matches the performance of an ideal 16-
way CMP. Thus, despite SSA’s severe limits on node computational 
power, network bandwidth and connectivity, and low control over 
the fabrication process, it matches the performance of idealized 
conventional architectures, with lower device switching speeds and 
a lower power density. We also show that SSA can tolerate high 
node defect rates. For the encryption benchmarks, performance 
gracefully degrades as the fraction of defective nodes increases to 
30%. For the other benchmarks, by over-provisioning the system, 
SSA tolerates up to 20% defective nodes with a small (<10%) deg-
radation in performance.

Our results highlight SSA’s flexibility in configuring indepen-
dent cells to improve system utilization and throughput. SSA pro-
vides higher throughput than the P4 and I-SS while using the same 
area. Coupled with the ability to tolerate a significant defect rate, 
SSA shows potential in harnessing the higher device densities that 
emerging technologies promise to deliver.

4  Limitations, Future Work and Conclusion
Our performance evaluation highlights the fact that SSA is not 

a general purpose architecture, and is unlikely to match the perfor-
mance of conventional processors on most general purpose work-
loads. SSA is likely to achieve good performance on data parallel 

programs that require little inter-PE communication, nearest 
neighbor communication or regular and unidirectional dataflow, 
but not on programs that require all-to-all communication. There 
are a number of avenues for further research. We plan to extend 
SSA to speed up floating point operations, exploit multiple anchors 
to increase system I/O bandwidth, and to handle transient faults 
through redundant execution or by extending PEs to perform sim-
ple checksum/parity computations. We are also looking at extend-
ing the software toolchain to explore compiler optimizations.

The expected rise in defect rates for both top-down and bot-
tom-up manufacturing techniques makes it imperative for archi-
tects to develop defect tolerant architectures to exploit the full 
potential of emerging nanoscale devices. To this end, we have 
developed SSA, a self-organizing SIMD architecture built from a 
random network of simple self-assembled computational nodes. 
Despite high defect rates, low bandwidth and lack of underlying 
physical structure we show that, for data parallel workloads, SSA 
is able to perform better than conventional microprocessors, while 
operating at a lower speed and consuming much less power. While 
SSA does not solve all problems encountered with self-assembled 
architectures, it is a step towards realizing defect tolerant comput-
ing systems that may provide inexpensive terascale integration.
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FIGURE 1. Configured system with 3 8-bit processing 
elements (PEs), with one anchor node (denoted ‘A’).

A

1.H
1.0 1.1

1.2

1.3
1.4

1.5
1.7

1.61.T

2.H

2.02.1

2.2

2.3
2.4

2.5

2.T

2.7
2.63.H

3.0

3.4

3.5

3.7
3.1

3.2

3.3

3.T

3.6


	1 Introduction
	2 System Architecture
	FIGURE 1. Configured system with 3 8-bit processing elements (PEs), with one anchor node (denoted ‘A’).

	3 Evaluation
	4 Limitations, Future Work and Conclusion
	Acknowledgments
	References

	A Defect Tolerant Self-organizing Nanoscale SIMD Architecture
	Jaidev P. Patwardhan†, Chris Dwyer‡, and Alvin R. Lebeck† {jaidev,alvy}@cs.duke.edu, dwyer@ee.duke.edu
	†Department of Computer Science
	‡Department of Electrical and Computer Engineering
	Duke University
	Duke University
	Durham, NC 27708
	Durham, NC 27708



