
A Defect Tolerant Self-organizing Nanoscale SIMD Architecture

Jaidev P. Patwardhan†, Chris Dwyer‡, and Alvin R. Lebeck†

{jaidev,alvy}@cs.duke.edu, dwyer@ee.duke.edu.
†Department of Computer Science ‡Department of Electrical and Computer Engineering

Duke University Duke University
Durham, NC 27708 Durham, NC 27708
1 Introduction
Manufacturing defects, power density, process variability,

transient faults, bulk silicon limits, rising test costs and multibil-
lion dollar fabrication facilities are some of the challenges facing
the continued scaling of CMOS. While architectural modifications
(e.g., multicore) can provide some short-term relief, the semicon-
ductor industry recognizes the importance of these issues and the
need to explore long term alternatives to CMOS devices and fabri-
cation techniques [5]. One promising alternative is DNA-based
self-assembly [11] of nanoscale components using inexpensive
laboratory equipment to achieve tera to peta-scale integration.
Although much of this technology is in its infancy (i.e., demon-
strated in research lab experiments), by studying its potential uses
for building computing systems, architects can gain a deeper
understanding of its limitations and opportunities while providing
important feedback to the scientists developing the new technolo-
gies. While our work is motivated by DNA-based self-assembly, it
is applicable to any technology with similar characteristics (e.g.,
scaled CMOS with high process variability, high defect rates and
point-to-point links between relatively small compute nodes).

We previously proposed an assembly process [9] to place elec-
tronic circuits on a DNA grid [14,15]. DNA-based fabrication pro-
duces precise control within a small area (e.g., 9 µm2) enabling the
construction of a large number (~109-1012) of small nodes (com-
putational circuits with ~104 transistors) that can be linked
together using self-assembly. This produces a random network of
nodes, due to the lack of control over placement and orientation of
nodes, that contains defective nodes and links. A computing sys-
tem built from this random network must: a) tolerate node and
interconnect defects, b) not rely on underlying network structure,
c) compose more powerful computational blocks from simple
nodes, d) minimize communication overheads, and e) achieve per-
formance that is at least comparable to future CMOS based sys-
tems. Several research projects have examined building computing
systems with a subset of these goals, including self-organization
[1,13], routing and resiliency in the face of defects [1,4] and the
ability to compose complex computational units from simpler
blocks [7], but we face added challenges because of the extremely
limited computational capabilities available in nodes. We previ-
ously developed the nanoscale active network architecture
(NANA) [8], which is a general purpose architecture designed with
a similar set of goals, but it fails to match the performance of con-
ventional CMOS systems.

We present a SIMD architecture designed to address these
challenges. The fundamental building block in our architecture is a
relatively small node (e.g., 1-bit ALU with 32 bits of storage and
communication support for four neighbors) that operates asyn-
chronously. A configuration phase at startup isolates defective
nodes and allows groups of nodes to self-organize into SIMD pro-
cessing elements (PEs). Simulations using conservative estimates

for node size and device speed show that the proposed design can
match the performance of aggressively scaled architectures for 8
out of 9 benchmarks tested. Furthermore, this performance is
achieved with a very low power density of 6.5 W/cm2 (vs. >75
W/cm2 for modern cores) while conservatively assuming that
about 90% of the devices in the system switch every nanosecond.
Finally, we show that our system can tolerate up to 30% defective
nodes. Our results demonstrate the potential of this technology for
building high performance architectures despite high defect rates
and loss of precise control during fabrication. Further improve-
ments are possible as the technology scales to allow more complex
nodes, better inter-node connectivity, and faster devices.

2 System Architecture
To efficiently utilize large numbers (>109-1012) of nodes we

implement a SIMD architecture and focus on data parallel work-
loads. Our proposed system - called the “Self-organizing SIMD
Architecture” (SSA) - supports a three operand register-based ISA
with predicated execution and explicit PE-Shift instructions to
move data between PEs and communicate with an external con-
troller. Each SSA instruction has between 39 and 44 bits and con-
tains: 1) a 16-bit fully-decoded opcode microinstruction, 2) a 20-
bit register specifier microinstruction, and 3) a 3-bit “synch”
microinstruction with an optional 5-bit synch repeat counter. Each
microinstruction can be independently broadcast and includes 2
bits of control overhead to select a control register as a destination.
We assume that the external controller has access to a conventional
memory system.

Careful node design is critical in maximizing system perfor-
mance. Due to limited node size, designing the node architecture
involves a trade-off between maximizing functionality (compute,
communicate, and self-organize) and performance while minimiz-
ing circuit size. To avoid the area and power overhead of routing
clock signals and to mitigate the effects of device parameter varia-
tion, instruction execution and sequencing within a node are asyn-
chronous. Each node has a 1-bit ALU with a small register file and
connects to other nodes with (up to four) single wire links. Each
link supports low bandwidth asynchronous communication that
transfers 1 data bit per handshake. To support deadlock-free rout-
ing, we add support for three virtual channels (1 bit each). The ran-
dom network of nodes is organized at two levels during a
configuration phase. First, since a node is too small to hold a PE,
we group sets of nodes to form a PE. Second, PEs are linked in a
logical ring providing programmers a simplified system view to
reason about inter-PE communication. Communication with exter-
nal circuitry occurs through metal junctions (“vias”) which are
controlled by “anchor” nodes. Figure 1 shows a small random net-
work configured to form three 8-bit PEs.

The configuration process, initiated from an anchor, maps out
defective nodes and connects functional nodes in a broadcast tree
using a variant of the “reverse path forwarding” (RPF) algorithm

[3,10]. The system can be configured in two ways: a) as a mono-
lithic system, all PEs on one logical ring (one “cell”), or b) as mul-
tiple, independent logical rings (multiple “cells”). In case (b), we
achieve space partitioning by running the configuration algorithm
from multiple anchors to create independent cells.

3 Evaluation
We evaluate SSA using a custom, event-driven simulator and

use results from simulating smaller systems to extrapolate the
behavior of larger systems. The simulator models each node in
detail to obtain a detailed view of system execution. The latency of
all activity in a node is a multiple of a base “time quantum”, which
we conservatively assume to be 1 nanosecond. Experimental
devices are expected to operate at frequencies exceeding 100 GHz
[2] with demonstrated frequencies over 10GHz [12] (time quantum
of 0.1 ns), and asynchronous handshakes at high speeds have been
demonstrated [6]. We compare the performance of SSA to a Pen-
tium 4 (P4), an ideal out-of-order superscalar (I-SS), an ideal 16-
way CMP (16-CMP) and an ideal implementation of SSA (I-SSA)
that uses the same instruction set, but assumes unit instruction exe-
cution latencies, and no communication overhead. We use nine
benchmarks - matrix multiplication, image filters (3), sorting,
searching, bin-packing and data encryption (2).

We find that SSA achieves good performance on benchmarks
that have data parallelism (all except sort). For a configuration with
more than 64K PEs, SSA matches the performance of an ideal 16-
way CMP. Thus, despite SSA’s severe limits on node computational
power, network bandwidth and connectivity, and low control over
the fabrication process, it matches the performance of idealized
conventional architectures, with lower device switching speeds and
a lower power density. We also show that SSA can tolerate high
node defect rates. For the encryption benchmarks, performance
gracefully degrades as the fraction of defective nodes increases to
30%. For the other benchmarks, by over-provisioning the system,
SSA tolerates up to 20% defective nodes with a small (<10%) deg-
radation in performance.

Our results highlight SSA’s flexibility in configuring indepen-
dent cells to improve system utilization and throughput. SSA pro-
vides higher throughput than the P4 and I-SS while using the same
area. Coupled with the ability to tolerate a significant defect rate,
SSA shows potential in harnessing the higher device densities that
emerging technologies promise to deliver.

4 Limitations, Future Work and Conclusion
Our performance evaluation highlights the fact that SSA is not

a general purpose architecture, and is unlikely to match the perfor-
mance of conventional processors on most general purpose work-
loads. SSA is likely to achieve good performance on data parallel

programs that require little inter-PE communication, nearest
neighbor communication or regular and unidirectional dataflow,
but not on programs that require all-to-all communication. There
are a number of avenues for further research. We plan to extend
SSA to speed up floating point operations, exploit multiple anchors
to increase system I/O bandwidth, and to handle transient faults
through redundant execution or by extending PEs to perform sim-
ple checksum/parity computations. We are also looking at extend-
ing the software toolchain to explore compiler optimizations.

The expected rise in defect rates for both top-down and bot-
tom-up manufacturing techniques makes it imperative for archi-
tects to develop defect tolerant architectures to exploit the full
potential of emerging nanoscale devices. To this end, we have
developed SSA, a self-organizing SIMD architecture built from a
random network of simple self-assembled computational nodes.
Despite high defect rates, low bandwidth and lack of underlying
physical structure we show that, for data parallel workloads, SSA
is able to perform better than conventional microprocessors, while
operating at a lower speed and consuming much less power. While
SSA does not solve all problems encountered with self-assembled
architectures, it is a step towards realizing defect tolerant comput-
ing systems that may provide inexpensive terascale integration.

Acknowledgments
This work is supported by an NSF ITR grant CCR-0326157,

the Duke University Provost’s Common Fund, AFRL contract
FA8750-05-2-0018, and equipment donations from IBM and Intel.

References
[1] H. Abelson et al. Amorphous Computing. Communications of

the ACM, 43(5):74–82, 2000.
[2] P. J. Burke. Carbon Nanotube Devices for GHz to THz

Applications. Proc. of SPIE, 5593:52–61, 2004.
[3] Y. K. Dalal and R. M. Metcalfe. Reverse Path Forwarding of

Broadcast Packets. Comm. of the ACM, 21(12):1040–48, 1978.
[4] C. Intanagonwiwat et al. Directed Diffusion: A Scalable and

Robust Communication Paradigm for Sensor Networks. In
Mobile Computing and Networking, pages 56–67, 2000.

[5] International Technology Roadmap for Semiconductors, 2005.
[6] A. Lines. Asynchronous interconnect for synchronous SoC

design. IEEE Micro, 24:32–41, Jan/Feb 2004.
[7] K. Mai et al. Smart Memories: A Modular Reconfigurable

Architecture. In Proc. of the 27th Annual International
Symposium on Computer Architecture, June 2000.

[8] J. Patwardhan et al. NANA: A Nanoscale Active Network
Architecture. ACM Journal on Emerging Technologies in
Computing Systems (JETC), Vol. 2, No. 1, Pages 1-30, Jan 2006.

[9] J. P. Patwardhan et al. Circuit and System Architecture for DNA-
Guided Self-Assembly of Nanoelectronics. In Foundations of
Nanoscience: Self-Assembled Architectures and Devices, pages
344–358, Apr. 2004.

[10] J. P. Patwardhan et al. Evaluating the Connectivity of Self-
Assembled Networks of Nano-scale Processing Elements. In
IEEE Intl. Workshop on Design and Test of Defect-Tolerant
Nanoscale Architectures (NANOARCH ’05), May 2005.

[11] B. H. Robinson and N. C. Seeman. The design of a biochop: a
self-assembling molecular-scale memory device. Protein
Engineering, 1:295–300, Aug. 1987.

[12] S. Rosenblatt et al. Mixing at 50GHz using a Single-Walled
Carbon Nanotube Transistor. Applied Physics Letters,
87:153111, Oct. 2005.

[13] M. D. Schroeder et al. Autonet: A High-speed, Self-Configuring
Local Area Network Using Point to Point Links. IEEE Journal
on Selected Areas in Communications, 9(8), Oct. 1991.

[14] E. Winfree et al. Design and Self-Assembly of Two-
Dimensional DNA Crystals. Nature, 394:539, 1998.

[15] H. Yan et al. DNA Templated Self-Assembly of Protein Arrays
and Highly Conductive Nanowires. Science, 301(5641):1882–
1884, Sept. 2003.

FIGURE 1. Configured system with 3 8-bit processing
elements (PEs), with one anchor node (denoted ‘A’).

A

1.H
1.0 1.1

1.2

1.3
1.4

1.5
1.7

1.61.T

2.H

2.02.1

2.2

2.3
2.4

2.5

2.T

2.7
2.63.H

3.0

3.4

3.5

3.7
3.1

3.2

3.3

3.T

3.6

	1 Introduction
	2 System Architecture
	FIGURE 1. Configured system with 3 8-bit processing elements (PEs), with one anchor node (denoted ‘A’).

	3 Evaluation
	4 Limitations, Future Work and Conclusion
	Acknowledgments
	References

	A Defect Tolerant Self-organizing Nanoscale SIMD Architecture
	Jaidev P. Patwardhan†, Chris Dwyer‡, and Alvin R. Lebeck† {jaidev,alvy}@cs.duke.edu, dwyer@ee.duke.edu
	†Department of Computer Science
	‡Department of Electrical and Computer Engineering
	Duke University
	Duke University
	Durham, NC 27708
	Durham, NC 27708

