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Abstract

The continual decrease in transistor size (through either scaled 
CMOS or emerging nano-technologies) promises to usher in an era 
of tera to peta-scale integration. However, this decrease in size is 
also likely to increase defect densities, contributing to the exponen-
tially increasing cost of top-down lithography. Bottom-up manu-
facturing techniques, like self-assembly, may provide a viable 
lower-cost alternative to top-down lithography, but may also be 
prone to higher defects. Therefore, regardless of fabrication meth-
odology, defect tolerant architectures are necessary to exploit the 
full potential of future increased device densities.

This paper explores a defect tolerant SIMD architecture. A key fea-
ture of our design is the ability of a large number of limited capa-
bility nodes with high defect rates (up to 30%) to self-organize into 
a set of SIMD processing elements. Despite node simplicity and 
high defect rates, we show that by supporting the familiar data par-
allel programming model the architecture can execute a variety of 
programs. The architecture efficiently exploits a large number of 
nodes and higher device densities to keep device switching speeds 
and power density low. On a medium sized system (~1cm2 area), 
the performance of the proposed architecture on our data parallel 
programs matches or exceeds the performance of an aggressively 
scaled out-of-order processor (128-wide, 8k reorder buffer, perfect 
memory system). For larger systems (>1cm2), the proposed archi-
tecture can match the performance of a chip multiprocessor with 16 
aggressively scaled out-of-order cores.

Categories and Subject Descriptors    B.4.3 [Input/Output and 
Data Communications]: Interconnections (Subsystems); B.6.1 
[Logic Design]: Design Styles; C.1.2 [Processor Architectures]: 
Multiple Data Stream Architectures (Multiprocessors).
General Terms   Design, Performance, Reliability
Keywords    self-organizing, SIMD, data parallel, bit-serial, defect 
tolerance, DNA, nanocomputing.

1  Introduction
Manufacturing defects, power density, process variability, tran-

sient faults, bulk silicon limits, rising test costs and multibillion 
dollar fabrication facilities are some of the challenges facing the 
continued scaling of CMOS. While architectural modifications 
(e.g., multicore) can provide some short-term relief, the semicon-
ductor industry recognizes the importance of these issues and the 
need to explore long term alternatives to CMOS devices and fabri-
cation techniques [18].

One promising alternative is DNA-based self-assembly of 
nanoscale components using inexpensive laboratory equipment to 
achieve tera to peta-scale integration. Although much of this tech-
nology is in its infancy (i.e., demonstrated in research lab experi-
ments), by studying its potential uses for building computing 
systems, architects can gain a deeper understanding of its limita-
tions and opportunities while providing important feedback to the 
scientists developing the new technologies.

DNA-based fabrication produces precise control within a small 
area (e.g., 9 µm2) enabling the construction of a large number 
(~109-1012) of small nodes (computational circuits with ~104 tran-
sistors) that can be linked together using self-assembly. This pro-
duces a random network of nodes, due to the lack of control over 
placement and orientation of nodes, that contains defective nodes 
and links. While our work is motivated by DNA-based self-assem-
bly, it is applicable to any technology with similar characteristics 
(e.g., scaled CMOS with high process variability, high defect rates 
and point-to-point links between relatively small compute nodes). 
The challenge for computer architects is to efficiently exploit the 
computational power of the large number of nodes while overcom-
ing two primary challenges: 1) loss of precise control over the 
entire fabrication process, and 2) high defect rates.

This paper presents a SIMD architecture designed to address 
these challenges. The fundamental building block in our architec-
ture is a relatively small node (e.g., 1-bit ALU with 32 bits of stor-
age and communication support for four neighbors) that operates 
asynchronously. A configuration phase at startup isolates defective 
nodes and allows groups of nodes to self-organize into SIMD pro-
cessing elements (PEs) which are connected in a logical ring, thus 
simplifying the programmer’s view of the system.

Simulations using conservative estimates for node size and 
device speed show that the proposed design can match the perfor-
mance of aggressively scaled architectures for 8 out of 9 bench-
marks tested. Furthermore, this performance is achieved with a 
very low power density of 6.5 W/cm2 (vs. >75 W/cm2 for modern 
cores) while conservatively assuming that about 90% of the 
devices in the system switch every nanosecond. Finally, we show 
that our system can tolerate up to 30% defective nodes. Our results 
demonstrate the potential of this technology for building high per-
formance architectures despite high defect rates and loss of precise 
control during fabrication. Further improvements are possible as 
the technology scales to allow more complex nodes, better inter-
node connectivity, and faster devices. The main contributions of 
this paper are:

•adapting self-organization methods to computer architectures,

•designing a node that balances fabrication constraints with func-
tionality needed to communicate, compute, and self-organize, 
and,
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•demonstrating the above capabilities by composing a high-per-
formance, defect tolerant SIMD architecture from a random net-
work of nodes.

The rest of this paper is organized as follows. Section 2
describes self-assembled nanoscale systems. Section 3 presents a 
brief overview of our system. Section 4 describes the node archi-
tecture in detail. We present node self-organization mechanisms in 
Section 5 and system architecture in Section 6. We evaluate system 
performance in Section 7, describe limitations and identify areas 
for improvement in Section 8, and discuss related work in 
Section 9.

2  DNA-based Self-Assembled Nanoscale 
Systems and the Architectural Implications

Self-assembly of nano-electronic devices 
has the potential to emerge as a lower cost 
alternative to top-down manufacturing. 
DNA-based self-assembly [33] uses the 
precise binding rules of DNA with nanos-
cale devices to build computing systems. 
We assume a proposed assembly process 
[27] to place electronic circuits on a DNA 
grid [39,40]. The basic principle is to repli-
cate a simple unit cell on a large scale to 
build a circuit. The unit cell consists of a 
transistor placed in the cavity of a DNA-lat-

tice. A key requirement of this process is the ability to control the 
placement of electronic devices (e.g., carbon nanotubes [3,9] or sil-
icon nanowires [16]) at specific points on the DNA scaffold to form 
a circuit. Recently, two critical steps towards this goal were dem-
onstrated: 1) aperiodic patterns, with a 20nm pitch, on a DNA grid 
[12,26] and 2) DNA-guided self-assembly of nanowire transistors 
[36]. Figure 1 shows an atomic force microscope image of the let-
ter “A” patterned on a DNA grid. Figure 2 shows a schematic of a 
small lattice with carbon nanotube based transistors. We currently 
assume only two layers of metal interconnect within a lattice, 
which limits our ability to place and route circuits. We propose the 
use of conducting metallic planes separated by insulating layers to 
provide power and ground to the circuit. Figure 3 depicts a cross-
sectional view of the lattice, with two layers of interconnect and the 
power and ground planes.

Current self-assembly processes produce limited size DNA 
grids and thus limit circuit size. However, the parallel nature of 
self-assembly enables constructing many nodes (~109-1012) that 

may be linked together by self-assembled conducting nanowires 
[40]. The proposed self-assembly method does not control the 
placement and orientation of nodes as they are interconnected, 
resulting in a random network of nodes that contains defective 
nodes and links. Communication with external CMOS circuitry 
occurs through a metal junction (“via”) that overlaps several nodes 
but interfaces with the network of nodes through a single “anchor 
node”. There may be several via/anchor node pairs in large net-
works. Figure 4 shows a small network of nodes, including regions 
with defective links, and a via/anchor. In the rest of the paper we 
use the term “anchor” to refer to an anchor node/via pair.

A computing system 
built from this random 
network must: a) toler-
ate node and intercon-
nect defects, b) not rely 
on underlying network 
structure, c) compose 
more powerful compu-
tational blocks from 
simple nodes, d) mini-
mize communication 
overheads, and e) 

achieve performance that is at least comparable to future CMOS 
based systems. Several research projects examine building comput-
ing systems with a subset of these goals, including self-organiza-
tion [1,35], routing and resiliency in the face of defects [1,17] and 
the ability to compose complex computational units from simpler 
blocks [24], but we face added challenges because of the extremely 
limited computational capabilities available in nodes. Our previous 
work, the nanoscale active network architecture (NANA) [30] is a 
general purpose architecture designed with a similar set of goals, 
assuming similar underlying technology. However, it fails to match 
the performance of conventional CMOS systems since it is unable 
to efficiently utilize the computational capabilities of the nodes at 
the same time. The design of the SIMD architecture presented in 
this paper is guided by the lessons learned through the design and 
evaluation of NANA. We defer discussion of other closely related 
research to Section 9.

3  System Overview
The goal of this work is to build a defect tolerant computing 

system with a random network of nodes using a mix of new solu-
tions and adaptations of known techniques and achieve perfor-
mance comparable to future CMOS based systems. To efficiently 
utilize large numbers (>109-1012) of nodes we implement a SIMD 
architecture and focus on data parallel workloads. Our proposed 
system - called the “Self-Organizing SIMD Architecture” (SOSA) 
- supports a three operand register-based ISA with predicated exe-
cution and explicit PE-Shift instructions to move data between PEs 

FIGURE 1. 
Patterned DNA [26]
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and communicate with an external controller. We assume that the 
external controller has access to a conventional memory system.

Each self-assembled node is a fully asynchronous circuit and 
there is no global clock to synchronize data transfers between or 
within nodes. Each node has a 1-bit ALU with a small register file 
and connects to other nodes with (up to four) single wire links. 
Each link supports low bandwidth asynchronous communication 
that transfers 1 data bit per handshake. To support deadlock-free 
routing, we add support for three virtual channels (1 bit each). The 
random network of nodes is organized at two levels during a con-
figuration phase. First, since a node is too small to hold a PE, we 
group sets of nodes to form a PE. Second, PEs are linked in a logi-
cal ring providing programmers a simplified system view to reason 
about inter-PE communication. 

The configuration process, initiated from an anchor, maps out 
defective nodes and connects functional nodes in a broadcast tree. 
The system can be configured in two ways: a) as a monolithic sys-
tem, all nodes on one logical ring (one “cell”), or b) as multiple, 
independent logical rings (multiple “cells”). For a monolithic sys-
tem, anchors can be used to speed up PE configuration and data 
input/output by serving as “taps” into the logical ring. The only 
constraint enforced during configuration is that an anchor cannot 
partition a PE. In case (b), we achieve space partitioning by run-
ning the configuration algorithm from multiple anchors to create 
independent cells. Space partitioning is a common technique used 
in highly parallel systems to increase resource utilization by 
enabling the execution of multiple instances of one workload, or 
running multiple workloads. We discuss space partitioning for our 
benchmarks in Section 7.

In the next three sections, we describe SOSA in detail. Though 
we present a bottom-up view of the system, the actual design pro-
cess was iterative and involved several passes through node and 
system design, requiring a balance between size constraints and 
adding hardware optimizations to improve performance.

4  Node Microarchitecture
Careful node design is critical in maximizing system perfor-

mance. Due to limited node size, designing the node architecture 
involves a trade-off between maximizing functionality (compute, 
communicate, and self-organize) and performance while minimiz-
ing circuit size. To avoid the area and power overhead of routing 
clock signals and to mitigate the effects of device parameter varia-
tion, instruction execution and sequencing within a node are asyn-
chronous. The rest of this section describes the node 
microarchitecture, splitting the discussion into the data path 
(Section 4.1), control (Section 4.2), and inter-node communication 
(Section 4.3), highlighting the trade-offs between functionality, 
performance and circuit size.

4.1  Data Path
Each node has a simple data path that consists of a 1-bit ALU, 

a 32-bit register file, and a data buffer that stores incoming and out-
going data. The register file and data buffer can act as sources 
and/or sinks for the ALU. The data buffer cannot be written to 
unless the current instruction is waiting for data, and once written, 
cannot be overwritten until the data is used by the ALU. All inter-
nal node communication occurs on dedicated point to point links. 
Where possible, we overlap the latency of moving a bit between 
two parts of the node with other operations.

Nodes can be designed to partition the 32-bit register file into 
N-bit wide registers that require an N-bit ALU or repeated use of a 
single-bit ALU. For example, a 32-bit PE could be created with 32 
1-bit registers, requiring 32 nodes for the PE, or with 16 2-bit regis-
ters, requiring 16 nodes to form the PE. Increasing register width 
increases the work done per instruction in a node, reduces the num-
ber of nodes required to form a PE, and reduces inter-PE communi-
cation overheads (since PE length reduces). However, for a fixed 
sized node, wider registers reduce the number of registers available 
to a programmer. Simulations reveal that 2-bit wide registers 
achieve the best trade-off in terms of maximizing the benefit of 
wider registers and the number of registers available to program-
mers. We also find that program performance is not sensitive to 
ALU execution latencies shorter than the time taken to 
send/receive a bit between nodes.

4.2  Control
The control logic in the node can be divided into two parts. The 

first part (configuration logic) is used only during configuration 
and has control registers for defect testing/isolation (main control 
register), and PE configuration (PE control register). Figure 5
shows a floorplan of the node with the configuration logic demar-
cated by a dashed rectangle within the control and data block.

The second part is the run-time control logic used to decode 
and execute instructions. To reduce design complexity we sacrifice 
latency and use microcoded control logic with each instruction 
divided into multiple microinstructions. The run-time control logic 
has three control registers to hold each of three micro-instructions 
that comprise an instruction: a) opcode, b) register specifier and c) 
synchronization (synch). The synch microinstruction holds an 
optional counter value (“repeat counter”) to enable the repeated 
execution of one instruction and avoid broadcasting the same 
instruction consecutively. The register specifier includes fields that 
allow simple increment/decrement operations on register specifiers 
in conjunction with their reuse (for striding through registers). We 
add a shared circuit that is used to increment/decrement register 

FIGURE 5. Node Floorplan
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specifiers and the repeat counter. Because of high instruction exe-
cution latencies, the increment/decrement operations can be over-
lapped with other operations, effectively hiding their latency. 

All arriving microinstructions are first sent to an instruction 
buffer before they are moved to the control registers, creating a 
simple two-stage pipeline (buffer, execute). Each entry in the 
instruction buffer can hold all three micro-instructions that form a 
full instruction. The instruction opcode is fully decoded and copy-
ing the instruction into the control registers enables all control sig-
nals required to execute the instruction and detect its completion so 
that the next instruction can begin to execute. Increasing the 
instruction buffer size can improve performance by overlapping 
instruction broadcast with execution, but can also cause greater 
contention (and reduce performance) on the network since instruc-
tions and data must share link bandwidth. Simulations reveal that a 
single entry instruction buffer offers the best trade-off between 
improving performance and minimizing design complexity.

4.3  Inter-Node Communication
Nodes communicate with each other on single-bit asynchro-

nous links. Each end of a link terminates in a transceiver that can 
handle three virtual channels (using 1-bit buffers per virtual chan-
nel). The transceiver can route each virtual channel (VC) indepen-
dently and requires three bits of state per VC to store the 
destination address. To support self-organization, nodes include 
logic to configure static routes (see Section 5.1). Virtual channel 0 
(VC0) is used to broadcast instructions. Virtual channel 1 (VC1) 
and virtual channel 2 (VC2) are used to route data in opposite 
directions on the logical ring. Each asynchronous transaction on a 
link is controlled through a four-phase handshake. The links sup-
port bidirectional full-duplex transfers. To simplify transceiver cir-
cuit size and complexity we transfer 1 bit per handshake (which 
severely limits link bandwidth).

4.4  Circuit Size and Power Estimates
We have completed the circuit design for all node components. 

We use this design in conjunction with layouts of simple logic 
blocks to estimate node size and power consumption. Our simula-
tor (discussed in Section 7) models the system in sufficient detail to 
make it relatively easy to extract a circuit model for most compo-
nents. Figure 5 shows a floorplan of a node, showing the approxi-
mate position (not to scale) of the datapath, control and 
transceivers. We estimate that the entire node will require 10,000 
transistors. Since the proposed fabrication technology currently 
imposes limitations on the number of metal layers, we estimate the 
final area of the node to be the equivalent of 22,000 transistors 
(based on our experience in laying out circuits) which translates to 
a 3µm x 3µm node. Recent work [40] has shown that it should be 
possible to manufacture DNA grids of this size.

To estimate system power consumption, we use the 
energy*delay product for carbon nanotube field effect transistor 
(CNFET) circuits [11]. Based on a switching speed of 1 ns (see 
Section 7.1), and estimated node gate and latch counts, we calcu-
late an upper bound on the per node power consumption. During 
execution, the configuration logic and a large part of the register 
file are inactive (at most 3 registers can be active). Accounting for 
these inactive elements yields a node activity factor of 0.88, which 
corresponds to a power consumption of 0.775µW per node. To 
obtain an upper bound on the power density of this system, we 

assume that nodes are packed with no space between them. Using 
our estimated node area (9µm2) and power (0.775µW), we get a 
maximum power density of 6.5W/cm2, with a node activity factor 
of 0.88. This is much less than the power densities of current pro-
cessors, which are greater than 75 W/cm2. This estimate is pessi-
mistic since the activity factor is a conservative estimate, we cannot 
pack nodes perfectly, and defective nodes will further reduce 
power density.

4.5  Summary
Each node in SOSA is a small circuit that can communicate 

with up to four neighbors, store small amounts of state and perform 
simple computation. To minimize area and power overheads the 
nodes use asynchronous logic, however like current processors we 
still dedicate significant area to control and communication cir-
cuitry. The challenge is to coordinate the operation of these nodes 
connected through an unstructured network to execute programs.

5  System Configuration
To use the random network of nodes to perform useful compu-

tation we use a configuration mechanism to impose logical struc-
ture on the network and isolate defective nodes and links from the 
rest of the system. This allows nodes to self-organize and avoids 
the need for an external defect map, which would be impractical to 
obtain given the scale and bandwidth limitations of the system. 
Once defective nodes are isolated, the functional nodes are grouped 
to form PEs. We now describe this configuration in detail.

5.1  Logical Structure and Defect Isolation
We use a variant of the “reverse path forwarding” (RPF) algo-

rithm [7,28] to impose a logical tree structure on the network and 
isolate defects. When the system is powered up or reset, all nodes 
enter a “configuration mode”, steer incoming packets to the config-
uration control registers and execute the distributed RPF algorithm. 
A small packet is inserted through an anchor and is broadcast on all 
its active links (the transceiver analog control circuitry tests the 
liveness of its physical link).

The RPF algorithm states that any node receiving the broadcast 
propagates it on all links except the receiving link if and only if the 
node has not seen the broadcast before. The node also stores the 
direction (“gradient”) from which it received the broadcast and sets 
up internal routing information based on this direction. Following 
the gradient through a set of nodes leads to the broadcast source—
the tree root. A depth first traversal is established by nodes locally 
selecting links in a predefined order relative to their gradient link. 
Opposite orderings are used for forward (VC1) and reverse (VC2) 
traversals. This method can be used to have all nodes in the system 
self-organize into a tree or it can be used to create multiple trees by 
initiating the broadcast through multiple anchors. For example, we 
could self-assemble the random network of nodes on a silicon 
wafer with a grid of vias to create a system with multiple anchors.

Defect isolation is achieved by 1) augmenting each node with 
built-in-self-test and assuming fail-stop behavior [29], and 2) 
including a simple test vector in each broadcast packet that each 
node must successfully execute before propagating the broadcast. 
Nodes failing the test are isolated since there is no path through the 
node. Simulations show that the gradient can reach a very large 
fraction of functional nodes (i.e., achieve good coverage) for node 
4



defect rates up to 30%. Handling more complex defects like Byz-
antine failures is beyond the scope of this work.

5.2  Configuring Processing Elements
A node is too small to hold an entire PE, so we logically group 

a set of nodes to form a PE. To create PEs with N bits (we assume 
N=32), we traverse the broadcast tree in depth-first order (on VC1) 
and group N+2 consecutive unconfigured nodes. We use one con-
figuration packet per PE. An unconfigured node receiving a config-
uration packet examines it to determine what node in the PE is to 
be configured next. The first node holds auxiliary control bits for 
the PE and is called the “head” node. The next N nodes serve as 
compute nodes that form the N-bit PE. The last node (“tail”) serves 
as the terminating point of the PE and is used to store the status bits 
(carry/borrow) resulting from an arithmetic operation. A newly 
configured tail node sinks the configuration packet. To minimize 
PE setup time in large networks (>109 nodes), we could distribute 
configuration by exploiting multiple anchors.

If the broadcast tree does 
not have sufficient nodes to 
form an integral number of 
PEs, the “incomplete” PE is 
deconfigured before execution begins by performing a reverse 
depth first traversal on VC2. PE deconfiguration uses a simple 
packet and starts with the last configured node of the partial PE 
(i.e., PEs with no tail), and deconfigures all intermediate nodes 
until it reaches (and terminates at) the head node. Figure 6 shows 
the logical order of nodes within a PE. Figure 7-(1) shows the net-
work from Figure 4 in a “configured” state with three 8-bit PEs 
ordered by the depth first traversal of the network. The links shown 
with solid lines correspond to edges on the broadcast tree. Links 
that do not lie on the broadcast tree (dashed lines) are not used. The 
unlabeled nodes outside the via are part of a partial PE that has 
been deconfigured. The numbers within each node identify the PE 

that the node belongs to (first label) and the position of that node 
within the PE (second label). 

We extend PE configuration to optimize PE length (hops from 
head to tail). Very long PEs (e.g., a PE that spans the broadcast tree 
root) may reduce performance due to longer intra-PE communica-
tion latencies. Since the post-configuration step deconfigures par-
tial PEs, a PE that crosses a length threshold can be rejected by 
starting a new PE without creating a tail node. We empirically find 
that a threshold of 4 times the minimum PE length (compute nodes 
+ head + tail) achieves a good balance between extra nodes 
required and performance gained by reducing PE length. 

Once PEs are configured, all nodes set a “run” mode bit. Pack-
ets are no longer routed to the configuration control registers, 
unless the node receives a global reset instruction. Each PE waits 
for instructions to execute. In the next section, we describe how 
SOSA uses the configured PEs to execute instructions.

6  System Architecture
In this section, we describe the architecture of SOSA. Careful 

node design coupled with the self-organizing capability of each 
node enables us to map a data parallel architecture onto the random 
network of nodes. We begin by describing the instruction set 
(Section 6.1) and execution model (Section 6.2). Then, we present 
an example illustrating the execution of an instruction in the sys-
tem (Section 6.3). 

6.1  Instruction Set Architecture
SOSA uses a three register operand ISA, with microcoded 

instructions (Table 1 shows a subset of the instruction set). A full 
instruction has between 39 and 44 bits and contains: a) a 16-bit 
fully-decoded opcode microinstruction, b) a 20-bit register speci-
fier microinstruction (4 bits per register specifier for a 16-entry reg-
ister file, and 2 extra bits per register specifier to allow 
increment/decrement/no change operations), and c) a 3-bit “synch” 
microinstruction with an optional 5-bit synch repeat counter. Each 
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FIGURE 7. Instruction execution in a random network with three configured PEs. The via is shown to cover multiple nodes, 
which are rendered unusable. The via is connected to the PEs through the anchor node (A). I/O bandwidth into the system could 

be improved by adding more via/anchor pairs.
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microinstruction can be independently broadcast and includes 2 
bits of control overhead to select a control register as a destination.
Since opcodes are fully decoded, it is relatively straightforward to 
support fused instructions that include combinations of operations 
to increase the work done per instruction. For example, a Copy-
Shift first copies the source to the destination register, and then per-
forms a shift operation on the destination register. SOSA also sup-
ports predicated instruction execution (all instructions can be 
predicated) and has three types of instructions that can modify 
predicate bits: a) conditional instructions, b) unconditional predi-
cate modifying instructions and c) predicate-shift instructions.

Data exchange with the external controller and between PEs is 
handled through PE-Shift instructions. When PEs in a cell execute 
a PE-Shift instruction, each PE sends the contents of the specified 
register to a neighbor (left or right), and receives a new value for 
the register from the other neighbor (right or left). Since these 
instructions are critical for data communication, it is important to 
minimize their latency. We optimize PE-Shifts using the following 
observation: for a N-bit PE, each bit moves exactly (N+2) positions 
to the left or right, and a node only needs to store the (N+2)th bit in 
its register file and can “forward” the remaining bits without regis-
ter access. We use the synch repeat counter to track the bits being 
forwarded by the node. The node stops forwarding when it receives 
the (N+2)th bit. When a node is “forwarding” data, it copies the 
data bit directly from its input buffer to its output buffer. This 
reduces the critical path of a bit through the node. 

6.2  Execution Model
Instructions are broadcast on VC0 to all nodes, thus PEs, in a 

cell. Nodes first place instructions in the instruction buffer and then 
forward them down the broadcast tree. Instruction broadcast stalls 
when the instruction buffer is full. The arrival of the synchroniza-
tion micro-instruction is a signal to the node that all parts of the 
instruction have been received. An instruction moves from the 
instruction buffer to the node’s internal control registers only when 
the previous instruction finishes execution. Since nodes are band-
width limited, we allow the partial broadcast of instructions to 
reduce the number of bits broadcast. If an instruction broadcast 
skips a microinstruction (except synch), we reuse the previously 
latched value from the corresponding control register. The synch 
repeat counter also helps reduce the number of bits broadcast.

Non-predicated instructions can be executed independently by 
nodes of a PE, if there are no inter-bit data dependencies (e.g., for 

an OR instruction). The head and tail nodes act as PE delimiters, 
and ensure that intra-PE data packets do not cross PE boundaries. 
The tail node also stores the carry/borrow out from arithmetic oper-
ations. The head node stores predicate bits (one per physical regis-
ter) that are used to conditionally execute predicated instructions. 
The head node reads the specified predicate bit and informs the 
remaining nodes in the PE whether the predicated instruction is to 
be executed or squashed by sending a synch microinstruction on 
VC1. Since each node in a PE must wait for the extra synchroniza-
tion microinstruction (which is consumed by the tail), execution of 
predicated instructions is serialized through a PE.

6.3  Instruction Execution Example
Figure 7 uses the small configured network with three 8-bit 

PEs to illustrate the different steps involved in executing an ADD 
instruction. The anchor node broadcasts three micro-instructions 
that form the ADD on VC0 (step 1). As each node receives the 
micro-instructions it buffers them (step 2) and waits for the syn-
chronization micro-instruction to arrive. Once this microinstruction 
arrives (step 3), the node can start execution. Since we are execut-
ing an ADD, the head node of each PE must insert a carry-in for 
the first node (step 3). Each node then performs the ADD as it 
receives the carry-in (steps 4, 5, 6), and sends the carry-out to the 
next neighbor. When a node finishes with the ADD, it clears any 
temporary internal state used by the instruction and goes back to 
waiting for instructions to arrive (steps 7,8). 

One important aspect of the execution model is that different 
nodes and PEs can be in different stages of execution at the same 
time. In step 3 nodes 3.H and 3.3 are still idle, while other nodes in 
PE-3 are receiving data (3.0, 3.2), and some have received the full 
instruction and are stalled waiting for data (3.1, 3.4-3.T). This 
asynchronous execution within and between PEs allows them to 
make forward progress independently (as long as data dependen-
cies are satisfied) and helps SOSA tolerate large inter-node com-
munication latencies and achieve good performance. In the next 
section we evaluate the performance of SOSA.

7  Evaluation
This section describes our evaluation methodology, simulation 

infrastructure and workloads (Section 7.1), then compares SOSA 
performance to four other architectures (Section 7.2). We find that 
SOSA achieves good performance on benchmarks that have data 
parallelism. For a configuration with more than 64K PEs, SOSA 

TABLE 1. Instruction Set
Instruction Type Opcodes Description

Arithmetic
ADD, SUB, INC, DEC, SETGT, 

SETLT, SETEQ, SETNEQ
Various arithmetic and conditional instructions, “Set” instructions set the 

specified predicate register if the condition is satisfied

Logical AND, XOR, OR, NOT Various logical instructions

Shift SHIFTML,SHIFTLM, PSHIFTML
Various SHIFT instructions. ML=>MSB to LSB, LM=>LSB to MSB. The prefix 
“p” indicates that the instruction modifies the specified predicate register (not a 

predicated instruction)

PE-Shift SHIFTMLPE, SHIFTLMPE PE-Shift instructions. Move register to adjacent PE

Register operations CLEAR, CPREG, SWAP Clear, Copy or Swap registers

Predicated PR[OPCODE]
Any instruction with the prefix “Pr” is predicated. The predicate register 

corresponds to the first source register

Fused CPSHIFTLM, CPSHIFTML Copies source into destination, and performs a shift on the destination

Signal SIG_CTRL Send signal to external controller
6



matches the performance of an ideal 16-way CMP. Thus, despite 
SOSA’s severe limits on node computational power, network band-
width and connectivity, and low control over the fabrication pro-
cess, it matches the performance of idealized conventional 
architectures, with lower device switching speeds and a lower 
power density. We then show that SOSA can tolerate high node 
defect rates (Section 7.3). For the encryption benchmarks, perfor-
mance gracefully degrades as the fraction of defective nodes 
increases to 30%. For the other benchmarks, by over-provisioning 
the system, SOSA tolerates up to 20% defective nodes with a small 
(<10%) degradation in performance. We also find that the instruc-
tion buffer and microinstruction reuse optimizations improve per-
formance. Increasing ALU execution latency does not impact 
performance so long as it is lower than communication latencies. 

7.1  Methodology
We evaluate SOSA using a custom, event-driven simulator and 

use results from simulating smaller systems to extrapolate the 
behavior of larger systems. Since the nodes do not use a clock, we 
define the time taken to perform one part of the inter-node asyn-
chronous communication handshake as one “time quantum”. The 
latency of all activity in the node is a multiple of this time quan-
tum. Experimental devices are expected to operate at frequencies 
exceeding 100 GHz [4] with demonstrated frequencies over 
10GHz [34] (time quantum of 0.1 ns), and asynchronous hand-
shakes at high speeds have been demonstrated for high bandwidth 
crossbar networks [22]. We expect SOSA’s performance to scale 
with device performance, but assume a conservative time quantum 
of 1 nanosecond to avoid over-estimating performance due to 
aggressive technological parameters. We list our default simulation 
parameters in Table 2. We use a custom tool that models the growth 
of DNA nanotubes between nodes to generate network topologies. 

We compare the performance of SOSA to a Pentium 4 (P4) (3 
GHz, 1MB L2, 1 GB RAM), an ideal out-of-order superscalar (I-
SS) (128-wide, 8k ROB, 1-cycle memory latency), an ideal 16-way 
CMP (16-CMP) (obtained by linearly scaling performance of the I-
SS) and an ideal implementation of SOSA (I-SOSA) that uses the 
same instruction set, but assumes unit instruction execution laten-
cies, and no communication overhead. Table 3 lists the parameters 
used to simulate the I-SS with SimpleScalar [2].

Table 4 contains brief descriptions of the test programs, the 
broad application classes they fall under, and the number of PEs 
required by SOSA to run one instance of a program. For all pro-
grams other than the encryption algorithms, we configure the sys-
tem as a single cell with the necessary PEs. For the encryption 
algorithms, we configure the system as a collection of cells, each of 
which operates as a pipelined encryption unit. We use gcc to gener-

ate PISA binaries for simplescalar (flags: -O3) and Intel’s C Com-
piler (icc, flags: -O3 -fast -tpp7) for the P4 since optimized icc 
binaries outperform optimized gcc binaries. We test several ver-
sions of matrix multiplication from [32] and identify the best ver-
sion for the P4 (naïve version with three nested loops, since icc 
vectorizes loops for the SSE units) and I-SS (static loop unrolling). 
For sorting, we use an implementation of quicksort. For SOSA 
each program is hand-optimized (e.g., loop unrolling, code re-orga-
nization). The SOSA code for matrix multiplication and the image 
filters assumes data is in place before execution begins. However, 
this overhead forms only a small fraction of total execution time 
and can be reduced by exploiting multiple anchors in the system. 
The other workloads explicitly account for I/O overheads. The run-
ning times of programs do not include system configuration time 
(which is proportional to the number of nodes in the system). To 
estimate SOSA performance for configurations with more than 
16K PEs, we use simple linear extrapolation (simulating a 256x256 
matrix multiplication on a 3 GHz P4 with 32 GB RAM takes ~50 
days, which is impractical for data collection purposes). To vali-
date the extrapolations we compare extrapolated run times to simu-
lated run times for large configurations (8K-16K PEs).

7.2  Results
We now examine the performance of applications on SOSA 

with no defects. SOSA provides users the flexibility to configure 

TABLE 2. SOSA System Parameters

Parameter Value Parameter Value Parameter Value

Register File 16 entry, 2-bits per node Synch Repeat Counter Width 5 bits Data Width 32 bits

Time Quantum 1 ns PE Length Optimization Enabled Instruction Buffer Size 1 entry

ALU Latency 1 time quantum Register Increment/Decrement Enabled Link Type Full Duplex

TABLE 3. Ideal Superscalar Parameters

Parameter Value Parameter Value Parameter Value

Width 128 (Fetch/Decode/Issue/Commit) Integer ALU 128 Add,128 Mul Branch Prediction Perfect

Instruction Fetch Queue 1024 Entries FP ALU 128 Add,128 Mul Memory Latency 1 cycle

ROB/LSQ 8192 entries, single cycle access Frequency 10GHz Memory Ports 128

TABLE 4. Benchmark Descriptions

Application Class Benchmark Description

Scientific Multiply integer NxN matrices (N2 PEs)

Image Processing 
(Filters)

Apply a generic 3x3 filter on an NxN image 
(N2 PEs)

Apply a separable gaussian filter on an NxN 
image (N2 PEs)

Apply a median filter to an NxN image to 
reduce noise (N2 PEs)

General Purpose
Odd-Even Transposition Sort [20]- Parallel 

sort with nearest neighbor communication (N 
PEs for sorting N numbers)

Cryptography

Tiny Encryption Algorithm (TEA) - Simple 
encryption algorithm used in the XBox (64 

PEs)

eXtended TEA (XTEA) - Eliminates known 
vulnerabilities in TEA (64 PEs)

Search
Search a database for a match with an input 32 

bit string (O(N) PEs for N strings)

Bin-Packing
Pipelined version of bin-packing with first-fit 

heuristic (N PEs for N bins)
7



the system to minimize program running time (single cell, single 
program instance), or to maximize throughput (multiple cells, one 
program instance each). We divide our evaluation in two parts 

based on the performance metric being used (execution time or 
throughput).
Execution Time. For many workloads (image filters, matrix multi-
plication, sorting), system performance is determined by program 
execution time since we are solving a single instance of each prob-
lem. To evaluate the performance of these programs on SOSA, we 
configure the system to create one cell with the required number of 
PEs. The latency of an individual instruction in SOSA is high due 
to the overheads caused by limited node capabilities. However, 
SOSA can amortize this overhead by executing the same instruc-
tion in all PEs at the same time. Hence, we expect SOSA to per-
form poorly for small input sizes, where each instruction is 
executed in a small number of PEs. However, SOSA performance 
should improve as input size increases and eventually match (or 
exceed) the performance of the P4, I-SS and 16-CMP. The input 
size at which SOSA outperforms a particular architecture is appli-
cation dependent.

Inspecting the main loop body for matrix multiplication in 
fFigure 9 (optimizations are omitted to keep the code compact and 
readable), we see that the primary advantage for SOSA is the 
simultaneous computation of all products in the N2 PEs. This 
allows SOSA to convert the O(N3) algorithm to O(N2). Image fil-
ters and sorting are reduced from O(N2) algorithms to O(N).

We plot the running time of matrix multiplication, gaussian fil-
ters, median filters and sorting on different architectures in 
Figure 8, marking the input size beyond which SOSA outperforms 
the P4 with a vertical line (results for the generic 3x3 filter are 
qualitatively similar to the gaussian filter, and are skipped due to 
space constraints). As expected, SOSA does worse than the con-
ventional architectures for small input sizes, but matches and over-
takes them as input size increases (except for median filter and 
sort). The P4 matches the I-SS on matrix multiplication for two 
reasons: a) the P4 makes use of its SSE units, and b) I-SS only 
achieves an IPC of 9. The P4 performs much worse without the 
SSE units.

The performance of the median filter and sort algorithms is 
limited by their dependence on predicated instructions which seri-
alize execution in a PE. While the number of predicated instruc-
tions in the median filter is fixed (independent of input size), for 
sort it scales with input size. For the median filter, SOSA is able to 
match the performance of the uniprocessors, but not the ideal 16-
CMP (for image sizes up to 16Kx16K). For sort, the potential 
speedup on SOSA over quicksort on a single processor (average 
case) is O(log(N)). However, the overhead introduced by predi-
cated instructions makes it impossible for SOSA to match the per-
formance of the I-SS or P4. Exploring techniques to reduce this 
overhead is future work. Note that even I-SOSA cannot outperform 
the I-SS at sorting. This highlights one key limitation of SOSA: it 
is not a general purpose architecture and cannot match the perfor-
mance of conventional processors on general purpose workloads.
Throughput. There are a large number of workloads where high 
system throughput is desirable. The parallel computational capabil-
ities of SOSA can be used to achieve high system throughput by 
dividing the system into multiple cells, each having a set of PEs. 
While there are multiple ways to improve throughput, we focus on 
using multiple instances of a single application (operating on dif-
ferent data) running on different cells. For example, if we assume 
an area of 100mm2 (approximately the area of a P4 in 90nm 
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CMOS), we can configure over 5,000 cells (assuming an average 
inter-node gap of 1µm) that each perform an 8x8 matrix multiplica-
tion and achieve much higher throughput than the P4 or the I-SS.

TEA [38] and XTEA [25] are two simple encryption algo-
rithms developed at the University of Cambridge that use a combi-
nation of shift, add and xor operations to encrypt 64 bit blocks of 
data with a 128-bit key, with XTEA requiring more operations per 
iteration to achieve better cryptographic security. We implement 
pipelined versions of both algorithms that require 64 PEs (corre-
sponding to 64 encryption iterations) in a cell. Due to their require-
ment of fixed sized cells, these algorithms are well suited for the 
high-throughput, multiple cell configuration.

Since each cell operates independently and can handle multiple 
data blocks in parallel, TEA and XTEA achieve better throughput 
on SOSA than on the I-SS or P4. A single cell can perform 175,000 
TEA encryptions per second and 170,000 XTEA encryptions per 
second. Table 5 compares the performance of TEA on different 
architectures. The table shows that SOSA can achieve 79% of the 
throughput of the ideal 16-CMP, while using about the same area 
as a single core with devices switching at a tenth of the speed (1ns 
vs. 0.1ns). The comparison with I-SOSA highlights the overheads 
due to simple nodes and limited bandwidth in SOSA.

We have implemented pipelined versions of searching and bin-
packing algorithms in SOSA to maximize throughput. Our imple-
mentation of search achieves about 10 billion comparisons per sec-
ond on SOSA while using the same area as a P4 (the P4, I-SS and 
16-CMP achieve about 0.5, 2 and 32 billion comparisons per sec-
ond respectively). We see qualitatively (not quantitatively) similar 
results for bin-packing. SOSA’s ability to exploit data parallelism 
in these workloads helps it outperform conventional architectures.

7.3  Defect Tolerance
The ability to tolerate defects is one of the primary features of 

SOSA. To test the defect tolerance and to measure the effect of 
defects on performance, we run a number of experiments varying 
the node defect rate1. First, we examine the effect of defects on the 
throughput of a system configured into multiple cells. If we keep 
the total system area constant (100mm2), as node defect rates 
increase we are able to configure fewer cells, resulting in reduced 
throughput. Figure 10 plots the throughput for TEA and XTEA, as 
node defect rates increase from 0% to 30% revealing a graceful 
degradation in performance. The connectivity of the random net-
work of nodes is severely affected by node defect rates greater than 
30%. This results in network partitions with insufficient function-
ing nodes in each partition to configure a 64 PE cell.

For single cell applications, the entire system must be over-
provisioned to ensure that a sufficient number of PEs can be con-
figured. Thus defects indirectly impact performance by reducing 
network connectivity and bandwidth. In all experiments, SOSA has 
30% more nodes (24,000 total nodes) than the minimum needed 
for a 32x32 matrix multiply. Figure 11 shows the running time for 
32x32 matrix multiplication as we increase the number of defective 
nodes from 0% to 20%. We see that the running time increases by 
about 8% (compared to a case with no defects), primarily because 
the average length of PEs increases. We do not present results for 
the other workloads since they are qualitatively similar. If the sys-
tem cannot configure sufficient PEs, the problem could potentially 
be divided into parts that can be solved with the available PEs. 
Such partitioning, if possible, is beyond the scope of this work. 
Though the defect tolerance capabilities of the RPF algorithm have 
been demonstrated before, our experiments show that the ability to 

    ; Initialize before Multiply
CPREG R4,R2     ;Copy R4->R2
CPREG R3,R1     ;Copy R3->R1
CLEAR R5        ;Clear R5
  ;Multiply (Loop Dw times) (Dw: Data Width)
SHIFTLM R1      ;Shift LSB to MSB (multiply by 2)
PSHIFTML R2,R5  ;Shift MSB->LSB, LSB->pred.reg R5
PRADD R5,R1,R5  ;if predicate is set, R5=R5+R1
CLEAR R6        ; Clear R6
  ; Accumulate partial products
  ;Repeat log2(N) times (i is iteration count)
ADD R6,R6,R5    ;Accumulate partial sum
CPREG R6,R5     ;Copy R6 to R5
SHIFTMLPE R5    ;Repeat i*2 times
  ; End Repeat
ADD R6,R6,R5    ;Final add
  ; Align rows of matrix A for next set
  ; of multiplies (Repeat N times)
SHIFTMLPE R4    ;Move A ’N’ PEs to the left
  ; Move Result
CPREG R8,R9     ;if R8==1, this PE holds the first
              ;row/column element, move to R9
PSHIFTML R9,R6  ;Move that bit into the predicate
              ;register R6
PRCPREG R6,R7   ;if predicate set, copy R6->R7
SHIFTMLPE R7    ;Move R7 one PE to the left 

FIGURE 9. Matrix Multiply: Assembly Code (no unrolling)

TABLE 5. TEA Throughput for different architectures

Architecture Encryptions/sec

P4 @ 3 GHz (100mm2) 3.9 M/sec

I-SS 73.62 M/sec

16-CMP 1180 M/sec

SOSA (1 cell ~ 0.019mm2)  0.175 M/sec

I-SOSA (1 cell) 27.7 M/sec

SOSA (5400 cells, 100 mm2) 940 M/sec

I-SOSA(5400 cells) 72300 M/sec

1.  Our generated topologies include link defects but these only have an indirect (and 
minor) effect on performance. Performance is affected if the average number of links 
per node is less than 2. We find that nodes have 3.2 active links on average.

FIGURE 10. TEA/XTEA: Graceful degradation of 
throughput with increasing node defect rate
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tolerate high defect rates incurs only a small performance penalty 
(~8% for N=32, 32-bit PEs), a characteristic of increasing impor-
tance for future systems.

7.4  Result Summary
The results in this section show that a system built using a ran-

dom network of simple nodes can outperform a Pentium 4 (P4) and 
an ideal superscalar processor (I-SS), despite being severely band-
width limited and operating devices at a lower switching speed. A 
scaled up version of the system can outperform an ideal 16-way 
CMP. The results also highlight SOSA’s flexibility in configuring 
independent cells to improve system utilization and throughput. 
SOSA provides higher throughput than the P4 and I-SS while using 
the same area. Coupled with the ability to tolerate a significant 
defect rate, SOSA shows potential in harnessing the higher device 
densities that emerging technologies promise to deliver.

8  Limitations and Future Work
Our performance evaluation reinforces the common knowledge 

that a high computation to communication ratio is critical for 
achieving good performance, particularly on SOSA due to its low 
bandwidth and high communication latencies. SOSA is likely to 
achieve good performance on pipelined implementations of pro-
grams that require high throughput, or programs that require little 
inter-PE communication, nearest neighbor communication or regu-
lar and unidirectional dataflow. In contrast, SOSA is unlikely to 
achieve good performance for programs that require all-to-all com-
munication because of the logical ring topology and limited net-
work bandwidth. Although SOSA achieves good performance on 
most of the workloads we studied, it is not a general purpose archi-
tecture (as clearly demonstrated by the performance of sort). SOSA 
is unlikely to be able to match the performance of conventional 
processors on most general purpose workloads. SOSA is also lim-
ited by lack of hardware support for floating point operations. We 
have software implementations of floating point operations, but 
performance is limited by the use of predicated instructions to han-
dle control dependencies between different parts of the operations.

There are a number of avenues for further research. We plan to 
extend SOSA to speed up floating point operations, exploit multi-
ple anchors to increase system I/O bandwidth, and to handle tran-
sient faults through redundant execution or by extending PEs to 
perform simple checksum/parity computations. We are also look-
ing at extending the software toolchain to explore compiler optimi-
zations. Other open research areas include modifications to the 
configuration mechanism to exploit unused links to improve I/O 
bandwidth, configuring nodes for specific functionality (e.g., float-

ing point or storage), using SOSA as an add-on to a conventional 
core to improve performance on data parallel workloads, and creat-
ing hybrid cores that mix CMOS and self-assembled devices.

As self-assembly technology matures, some of the severe fabri-
cation limitations may be removed. The performance of I-SOSA 
provides an upper bound of SOSA performance, assuming a time 
quantum of 1 ns. However, with fewer fabrication limitations, it 
might be possible to achieve better performance by revisiting 
design decisions that trade-off performance for reduced design 
complexity. For example, if we can manufacture larger nodes, it 
might be possible to fit a full PE in one node, or to build more com-
plex transceivers to achieve better network connectivity [31]. As 
emerging device technologies improve, it may be possible to oper-
ate them at higher speeds (causing a potential increase in power 
consumption). It is important to note that while we assume DNA-
based self-assembly as the fabrication process, SOSA is applicable 
to any manufacturing technique that results in high defect rates and 
a loss of precise control during parts of the fabrication process.

9  Related Work
There is a large body of research on building computing sys-

tems with similar goals, but differs primarily in the granularity of 
the basic computational blocks used to form the system. SOSA 
must use very simple computational nodes due to fabrication con-
straints. In this section, we focus on closely related work applicable 
to emerging technologies. The decoupled array multiprocessor 
(DAMP) [10] and the nano-scale active network architecture 
(NANA) [30] use DNA-based self-assembly of nano-electronic 
devices. The DAMP exploits data parallelism, but it is not capable 
of efficient data exchange between processing elements, limiting it 
to embarrassingly parallel problems. SOSA uses more sophisti-
cated self-organization and achieves better performance than 
NANA since it has lower communication overheads, better node 
utilization and uses a single node type.

Researchers have developed FPGA-based reconfigurable archi-
tectures [6,14] that extract a system-level defect map, and use this 
external map to configure the system, while isolating defective 
regions. The key difference is that SOSA configures higher level 
logic blocks (nodes as opposed to gates in an FPGA) and does not 
require an external defect map. This is critical since we have little 
information about the physical network topology. Researchers have 
proposed various voting and redundancy schemes to deal with 
defects, including triple modular redundancy (TMR) [23], N-mod-
ular redundancy [37], NAND multiplexing and hot/cold sparing [8] 
(particularly in the context of molecular electronic systems). The 
defect tolerance scheme used in this paper does not rely on redun-
dant computation but isolates defectives regions in the system. 
There has been extensive research on designing and building vector 
[5,13] and SIMD machines [19,21], including the “Cell” processor 
[15]. The cell processor has eight SIMD cores that can be pro-
grammed independently, unlike the PEs in SOSA. The primary dif-
ferences between SOSA and past work is our focus on overcoming 
the challenges imposed by the fabrication technology and the need 
to tolerate defects. 

10  Conclusions
With the expected rise in defect rates as device sizes shrink, 

defect tolerance will be a critical requirement for future system 
architectures. These increasing defect rates will contribute directly 
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to the exponentially increasing cost of top-down manufacturing. 
The use of bottom-up techniques like self-assembly will help lower 
costs but may also result in higher defect rates and a loss of precise 
control over the manufacturing process. This makes it imperative 
for architects to develop defect tolerant architectures to exploit the 
full potential of future nanoscale devices. This paper presents 
SOSA, a self-organizing SIMD architecture built from a random 
network of simple computational nodes. Despite high defect rates, 
low bandwidth and lack of underlying physical structure we show 
that, for data parallel workloads, SOSA is able to perform better 
than conventional superscalar processors, while operating at a 
lower speed and consuming much less power. A scaled version of 
SOSA can perform better than an ideal 16-way CMP. As the under-
lying technology matures, SOSA’s performance can be further 
improved as fabrication limitations are removed. While SOSA 
does not solve all problems encountered with self-assembled archi-
tectures, it is a step towards realizing defect tolerant computing 
systems built using emerging technologies that may provide inex-
pensive terascale integration.
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