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Abstract

Wireless devices currently provide real-time access to person-
alized information such as headlines, email, stock quotes, and on-
line auctions. Retrieving all updates to such rapidly changing
information is wasteful of both network bandwidth and battery
power. Existing consistency models for such services allow for
only coarse-grained timeouts on how often information should be
retrieved. In this paper, we argue for the benefits of a continu-
ous consistency model for user access to Internet portal services.
Using this model, users are able to specify the maximum error in
their view of the data. For instance, users may specify that they
wish to receive an updated stock quote only if the users view di-
verges from the actual value by more than 3%. Services may also
use application-specific semantics to control data consistency—
e.g., new bids carry more weight as the auction draws to a close.
We use a simulator to model the bandwidth and energy benefits
available from a more flexible consistency model. Such benefits
depend upon the rate at which underlying data values change. To
capture representative distributions, we use a trace-based study of
updates to weather, news, and stock quotes from a popular portal
to determine representative distribution ranges. Our initial results
indicate bandwidth and energy savings that increase as users are
willing to tolerate larger bounds on data accuracy.

1. Introduction

Today, ubiquitous wireless devices promise real-time
views of rapidly changing data customized to the interests
of individual users. For example, wireless portal services
can provide snapshots over news headlines, stock quotes,
sports scores, weather forecasts, and a user’s mail mes-
sages in real time. However, rapid asynchronous updates
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can be both distracting to the end user and wasteful of lim-
ited system resources, such as wireless bandwidth and bat-
tery power. One common approach to reducing resource
consumption and asynchrony is to periodically pull updates
from the server, with the user able to pull more frequently
if needed. Of course, this often results in users who poll for
new email messages or changes to stock quotes or sports
scores when no changes actually take place to the underly-
ing data.

We observe that the fundamental mismatch between the
user’s desire to have “up to the second” accurate informa-
tion and the need to reduce system resource consumption
lies in the limited ability to specify consistency require-
ments. For example, users currently specify the maximum
staleness of their data in real time, but have no ability to
specify the maximum amount that the underlying data has
changed. Consider the example of stock quotes. Most portal
services indicate that stock quotes are delayed by at least 15
minutes, whereas many users would be more satisfied with
a guarantee that a quote is accurate within, for example, 3%
of its actual value. In this paper, we explore the benefits of
using a more flexible consistency model to control the ac-
curacy of data depicted to end users. We use the example of
users accessing customized information through a wireless
portal service. However, we believe the results can be gen-
eralized to any group of distributed machines maintaining a
shared view of rapidly changing data (e.g., cooperative web
caching or content distribution networks).

In this context, this paper makes two principal contri-
butions. First, we describe a simulation environment that
models different update patterns for a generic set of tar-
get data. The simulator also tracks the consistency require-
ments of a population of users, pushing necessary updates
to prevent violation of any consistency bounds. The system
tracks bandwidth and energy characteristics on a per-user
basis, allowing us to compare resource consumption at var-
ious consistency levels relative to a system that maintains
strong consistency. Reduced resource consumption is im-
portant, but the system must provide sufficiently accurate



information to be adopted by end users. While this accu-
racy is subjective (e.g., a day trader will not tolerate any-
thing less than real-time quotes), we set out to determine
potential distributions of updates to data of interest to Inter-
net users. Thus, the second contribution of this work is a
trace-based study to the rate and weight of updates to news
headlines, weather forecasts, and stock quotes. While we do
not argue that these initial measurements are representative,
our ability to fit the geometric distribution to these updates
allows us to study the benefits of our model for concrete
points in the simulation space.

The rest of this paper is organized as follows. Section 2
provides background on the consistency model used for this
work. Section 3 describes the trace methodology that is
used to determine initial models for how data might change
in a portal service. Section 4 describes the simulator we
built to carry out our experiments. Section 5 presents a
detailed description and analysis of our results. Section 6
presents our conclusions and future work.

2. Background

In this section, we discuss the consistency model used for
our study. Today, consistency of web content is typically ex-
pressed in terms of real-time staleness. Thus, users receive
guarantees that a stock quote is, for example, no more than
15 minutes old, or that a sports score will be refreshed every
minute. While such strict age-based notions of consistency
are useful, the passage of time does not always directly cor-
relate with the rate at which the underlying data is changing.
For instance, a stock may not change in value at all during
a 15 minute value, or it may change dramatically in a much
shorter time frame.

In our earlier work [13], we designed and evaluated
TACT, a continuous consistency model that allows us to dy-
namically trade reduced consistency for improved perfor-
mance and availability for replicated Internet services. This
tradeoff can be continuously made allowing the service to
adapt to changing client, network and service characteris-
tics. TACT uses three metrics to flexibly bound the con-
sistency of a replicated service relative to its peer replicas.
Numerical Error specifies the maximum weight of updates
not seen locally. Order Error is the maximum number of
local updates that have not been propagated to remote repli-
cas and thus have not established their final commit order.
Finally, Staleness is the maximum amount of elapsed time
before data is pushed to a replica. In the context of portal
services, such as instant messaging, email, online auctions,
and news, order error captures application sensitivity to the
ordering of updates (e.g., in the case where multiple bids
are being buffered at a single replica). Because such order-
ing requirements are subjective, we restrict our attention to
the benefits of numerical error and staleness though we be-

lieve that order error is very useful for a range of distributed
services as shown in [15].

In our model, users specify their desired numerical er-
ror and staleness in data delivered through a customized
portal service. We hypothesize that allowing users to flexi-
bly control both numerical error and staleness will prevent
polling that results in unchanged or nearly unchanged data
(wasting both bandwidth and energy). Thus, for example,
users may specify that they wish to be notified of stock
price changes larger than 3% with maximum staleness of
15 minutes. Consistency is specified at the granularity of
“conits” [15] (consistency units), logically a set of related
data items. Larger conits induce less overhead at the server,
while smaller conits provide finer control over data accu-
racy.

In this paper, we investigate the use of a particular con-
sistency model that allows applications to bound inconsis-
tency. For brevity, we simply note that there are a number
of related efforts in “variable consistency” [2, 3, 6, 8, 10],
optimistic consistency [4, 5, 7, 11, 12], and more traditional
database consistency models [1]. We believe that our ap-
proach of evaluating the benefits of a various consistency
models for portal services applies to these related efforts.

3. Trace

3.1. Overview

To obtain a representative distribution for the data for
our services, we collected trace data from three sample web
services. The traces also serve to validate the results gen-
erated by our simulator. We used the following services:
Yahoo! stocks, Yahoo! news, and Weather.com weather.
These three services are extremely popular among the on-
line community. They also exhibit diverse characteristics,
being updated at varying intervals. The nature and quantity
of the data provided by the sites also differ substantially.
We employed the parameters of Numerical Error and Stal-
eness to perform our processing of consistency. Modeling
staleness is straightforward in all three cases as the data is
updated periodically. For News, numerical error is difficult
to model, but we settle on the number of new headlines gen-
erated as the measure.

3.2. Stock Trace

Stocks provide the most dynamic data content. Through
real-time quotes, the stock values update virtually every sec-
ond. We chose stock quotes for Microsoft, Sun Microsys-
tems, Intel Corp, Oracle Corp, Cisco Systems, Dell Com-
puter, Applied Materials, Infosys Tech, General Motors and
PSIX as our sample set. The trace queried for values every
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Figure 1. Fitting a Geometric distribution to
stock value updates.

three seconds and it was carried out between 10am to 4pm
on five consecutive week days.

We measure the change between two readings and cal-
culate the probability of change. We have tried to fit the
data into several distributions. The main characteristic of
the data is a very high probability for no change (around
0.91). The geometric distribution approximates the data to
a high degree and can be used to model the data for our
stock trace. Figure 1 shows a magnified view of the distri-
bution for the Intel Corp. stock, and the geometric distri-
bution that can be used to model it. The parameter for the
fitting distribution is P=0.91. The parameter P of the geo-
metric distribution gives the probability of zero occurrence.
It also controls how fast the probability of occurrence drops
as we move along the X-axis. The error in our fit had a
standard deviation of 0.009. This means that our estimate
deviates from the actual data by 0.009, implying a good fit.

3.3. News Trace

News headlines are another example of dynamic data.
However, unlike stock quotes that vary on the granularity of
seconds, variation in headlines are more infrequent and less
predictable. We used Yahoo! News headlines to collect our
data trace. We find that headlines are updated every forty
minutes on average. We have collected data every twenty
minutes from the site, over a period of two weeks in early
November 2000.

Each headline is stored as a string in a file. To calcu-
late the change, for every set of headlines we computed
the number of new headlines, and used that number as the
“change”. The best-fit distribution once again is a geomet-
ric distribution. Figure 2 shows the distribution for News
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Figure 2. Fitting a geometric distribution to
news updates.

headlines and the geometric distribution that can be used to
model it. This distribution used a parameter of P=0.23 and
had a standard deviation on 0.033 from the data. As can be
seen in the graph and from the standard deviation, the vari-
ation is very irregular, and it is difficult to get a good fit for
it.

3.4. Weather Trace

Weather data is the third type of service that we con-
sider. We collected weather data from ten cities, widely
distributed geographically and climatically. The site data
is updated approximately once an hour. In order to ensure
that we did not miss updates, we collected readings at forty
minute intervals. The data we collected included the fol-
lowing readings: temperature, wind speed, wind chill fac-
tor, humidity, and dew point. We find that the geometric
distribution with parameter P=0.67 can best model the data,
and results in a standard deviation of 0.021 from the actual
data. This value of standard deviation implies a reasonably
good fit. Due to the irregularity in the data, it is difficult to
do much better than this. Figure 3 captures the results of
this analysis for the city of Tokyo.

4. Simulation

In the previous section, we described trace results of up-
date distributions to a number of popular Internet services.
In this section, we describe our simulation environment
used to quantify the bandwidth and energy savings avail-
able from using a flexible consistency model to bound the
error in a client’s view of data. Since the magnitude of such
benefits depends upon the rate of change of the underlying



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Temperature Data for Tokyo

Percentage Change

P
ro

ba
bi

lit
y

Data CDF             
Geometric CDF, P=0.67

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Error Plot

Percentage Change

E
rr

or

Std=0.021

Figure 3. Fitting a geometric distribution to
weather updates.

data, we use results from our trace-driven study to drive our
simulations.

4.1. Simulator Overview

This section describes our simulator. The simulator is
implemented in C++ to mimic the operation of the web ser-
vices described in section 3. We model the services using
the geometric distribution and variable update arrival rate.
Users specify their desired consistency level using staleness
and numerical error. Staleness specifies the longest time
the client is willing to go without an update. Numerical
error quantifies the maximum percentage error that clients
are willing to tolerate before receiving an update. For in-
stance, a numerical error of 0.05 for stock quotes specifies
that clients will be updated whenever their local view of the
stock price diverges by more than 5% from the “real” stock
price. The client is free to set any interval to “pull” the data.
By pull, we refer to explicitly requesting a server update. A
“push” is the complement of a “pull”. During a “push” the
server detects a consistency violation and transmits the data
to the client. Thus, clients set a consistency bound at the
server, but are free to get the data at any time.

The simulator implements a flexible bi-directional anti-
entropy mechanism [11]. To test the performance of the
simulator over the entire range of numerical error and stale-
ness values, each (numerical Error, staleness) tuple value
corresponds to a single client. The simulator does not
model contention at the server or any network congestion.
Furthermore, overheads associated with TCP connection
establishment/tear-down are not considered and bandwidth
consumed by protocol headers are ignored. In general, these
simplifying assumptions tend to understate the benefits of

our approach. Our simulator assumes the use of delta en-
coding [9] for data transfers. Thus, instead of retransmit-
ting the entire HTML page, our system transfers only the
changed data.

4.2. Simulation Parameters

The bandwidth savings essentially correspond to savings
in the amount of data transferred over the network at dif-
ferent consistency values relative to strong consistency. To
compute these savings, we add the savings accrued from
pushes and pulls. In performing these calculations, we use
a slightly higher overhead for pull, over the penalty chosen
for push. Since pull involves an additional level of interac-
tion in terms of requests and acknowledgments between the
server and the client, this is reasonable. The transfers were
assumed over an ideal 19.2kbps wireless link. We model
stock and weather services a little differently from the news
service. The reason for this is that while changes in news in-
volve new data being generated in addition to existing data,
changes to stocks and weather imply a change in the value
of an existing data item. On the other hand, the various per-
centage changes for headlines point to a different number of
headlines being generated. Hence, we choose a 5 byte value
for any change in the values of stocks, 100 bytes for head-
lines and 50 bytes for a change in weather values (These are
the values used with delta encoding).

Energy calculations present certain additional difficulties
since idle energy is significantly different from the energy
required to send and receive. The specifications we choose
are taken from a mobile phone data-sheet, with power pa-
rameters 0.05W for Idle, and 0.6W to either send or receive.
Our energy calculations are entirely restricted to the Net-
work Interface and do not take into account other system de-
vices. We assume that the device switches instantaneously
from the idle to the send/receive mode. If no transfers are
taking place, we assume that it instantly goes to low power
mode. We calculate the energy consumption for receiving
updates and add this value to the energy consumed while in
idle mode.

4.3. Simulator Operation

The simulator tries to establish anti-entropy between
each service and all the clients subscribed to it according
to the client-specified numerical error and staleness values.

Each service is modeled by a distribution that maps the
probability of updates to the percentage change in data. The
simulator analyzes the state of each service every second.
For each service � , a biased coin is tossed to decide the
weight of an update based on a specified distribution func-
tion. For each update, only the difference in the data main-
tained at the server and the client is transmitted, as obtained



through the use of delta encoding [9]. The simulator can be
in one of three modes for each client at every update: qui-
escent, push, pull. If the current update does not cause a
push/pull, then the update is accumulated but is not propa-
gated to the client. If the accumulated updates exceed the
numerical error or staleness specified by the client, then the
service pushes the data to the client.

The simulator operates on a time granularity of one sec-
ond. We model services such that an update is expected
once every X seconds (where X is service dependent). We
set the amount of data generated to different amounts for
each of the services depending on the value returned by our
distribution and the service. The network interface is as-
sumed to be a wireless device. We can modify the char-
acteristics of the wireless connection through a configura-
tion file. These include connection speed and various power
consumption levels.

4.4. Simulator Verification

In order to verify the results generated by our simula-
tor, we adopt a two-fold strategy. We modify the simulator
to dump the entire intermediate push/pull behavior of sev-
eral different clients and manually track these parameters
for possible bugs in our code. We repeat this test over a
number of simulations and this leads us to the next step of
verification.

The second technique of verification involves writing a
small “verifier” in C, from scratch. This program tries to
replicate the calculations that we use in our simulator model
but without many aspects of the simulator, which leads to
great simplification. We consider only one client subscribed
to all three services, and use the same consistency bounds
for all three services. We make modifications to the sim-
ulator to give us the random data generated as well as the
corresponding data changes. We then feed this data to the
verifier along with the the numerical error and consistency
values of one client whose performance was tracked in the
simulator. We compare the values generated by the verifier,
vis-a-vis the parameters of bandwidth and energy with the
corresponding output from the simulator. We find that the
results were identical over all combinations of numerical
error and staleness used for verification.

We further validate the simulator by using data from our
traces as input. This helps us verify that it does indeed pro-
duce a distribution that matches our input data. We compare
the output generated using the trace data with that produced
when the simulator generates its own data. We use the root
mean square error as a measure of how well our simulator
generates data to match the underlying traces. We vary the
parameter P and calculate the error.

Table 1 below shows the root mean square errors (per-
centage values) as obtained for various values of p, ranging

p rms-error p rms-error
0.1 24.0% 0.6 11.2%
0.2 18.6% 0.7 8.34%
0.3 17.4% 0.8 5.20%
0.4 15.7% 0.9 2.65%
0.5 13.6% 0.9 12.57%

Table 1. RMS Error for artificial data with re-
spect to real stock traces
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Figure 4. Performance with trace input to sim-
ulator (Stocks).

from 0.1 to 0.91 for stock quotes.
An rms error of nearly 24% signifies a rather poor fit

between the trace data and output produced by the simulator
with a 0.1 p value. We find that the lowest error is obtained
at p=0.91, the same p value that gives us the best fit with the
trace data. We think that the corresponding error value of
2.58% is a reasonably good fit, given the randomness of the
input data. Figure 4 shows the performance of our system
using trace data.

5. Results

We run simulations using the geometric distribution for
three different services. Each service has different charac-
teristics that closely match real services like Weather, Head-
lines and Stocks at Yahoo!. Each simulation examines the
services based on two parameters, bandwidth and energy.

The values of numerical error and staleness are provided
as input parameters to the simulator. The simulator is con-
figured to vary staleness for a given value of numerical error
unless otherwise stated. The simulations run for a total of
1008 clients, each corresponding to a unique value of stale-



ness and numeric error. The pull-time for each client is set
to 3000 seconds. To remove any random effects, we run the
simulations fifty times and the data from the fifty readings
is averaged to give the final results.

The main goal of our evaluation is to show that there are
improvements available from using variable consistency.
Thus we measure improvements with respect to perfor-
mance at strong consistency.

5.1. Bandwidth

In general, we observe large improvements in bandwidth
for all three services implemented. Each service has a dif-
ferent data unit size. Stocks have the lowest with 5 bytes,
weather 50 bytes, and headlines have a size of 100 bytes
per headline. Because less data must be pushed with re-
duced consistency, the amount of bandwidth left for other
applications is higher.

Bandwidth improvements of up to 95% are noted for
lower consistency settings. Figures 5, 6 and 7 show the
bandwidth savings as a function of consistency for sample
update distributions corresponding to our traces for weather,
stocks, and headlines (geometric distribution). In each case,
the graph plots savings in bandwidth relative to strong con-
sistency as a function of numerical error. Different curves
correspond to different staleness values. A numerical er-
ror value of 0.1 implies that stock values will be pushed if
they experience changes in value larger than 10%. It is in-
teresting to note that, the curves rise sharply with much of
the bandwidth savings taking place for relatively low values
for numerical error (with the knee of the curve at between
5-10% for the three graphs). We conclude that for our tar-
get update distributions, users can obtain bandwidth savings
while also receiving strong guarantees regarding the maxi-
mum “inconsistency” in their target data.

The graphs clearly show that different values of numeri-
cal error and staleness give different levels of performance.
For stocks, numerical error has a very small effect. This is
because of the fact that stock updates are rather small. For
most updates, the change is only around 0.1%. Hence, nu-
merical error has a much smaller effect than staleness. The
data is typically pushed because of staleness before the nu-
merical error is violated. The effect of numerical error for
other services on performance is strong at first, and then
drops sharply. Staleness also exhibits similar behavior with
initial increases in staleness causing a sharp increase in per-
formance. At higher values, the effect dips. One also no-
tices that each curve has a different starting point, pointing
to the fact that the base performance increase also goes up
as we lower the bounds on staleness. The results start flat-
tening out as staleness starts dominating over numerical er-
ror. The graphs depend on other factors like data generation
rate, maximum amount of data generated, distribution pa-
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Figure 5. Bandwidth savings as a function of
numerical error and staleness (Weather, Geo-
metric distribution).

rameters and pull time. Some of these effects are presented
below.

5.2. Energy

Improvements in the amount of energy consumed are
lower than the other parameters for all three services. This
is largely due to the fact that the clients spend most of their
time in an idle state and a little variation from that does
not lead to a very large reduction in energy usage. How-
ever, we do get an improvement for all lower consistency
settings, varying from a 6% to 20% reduction in consumed
energy. One representative result is depicted in Figure 8.
One reason why the energy savings are modest relative to
bandwidth is that only a small amount of data is transferred
for each update (recall that we assume delta encoding for
transmitting updates). Thus, we believe that energy savings
will accrue with a larger number of tracked data items. For
example, a typical portal user may track dozens of stocks
and news headlines simultaneously. Updates to individual
stock quotes/news headlines would incur overhead indepen-
dently. In the simulator described so far, we track only the
value of a single stock. Further, we do not model any of the
bandwidth or energy overheads associated with TCP con-
nections, TCP/IP packet headers, or HTTP protocol over-
head. We measure performance of a client tracking multiple
data items using a modified version of our simulator in the
next subsection.

5.3. Multiple Data Items

So far, we have limited our experiments to only one item
per service - that is, we have monitored only one stock, one
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Figure 7. Bandwidth savings as a function of
numerical error and staleness (News, Geo-
metric distribution).
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Figure 8. Energy savings from various con-
sistency states (Weather, Geometric distribu-
tion).

headline and one piece of weather data. In order to explore
the benefits of our scheme further, we extend our model
to capture the savings accrued from tracking multiple in-
stances for each service.

For our experiments, we include thirty stocks, thirty
headline items and thirty pieces of weather data and run our
simulation for the same time period as before. We find that
while the percentage savings with respect to the strongest
consistency client remains nearly the same with one item
per service as well as multiple ones, the savings logged in
terms of raw numbers of bandwidth and energy increase al-
most linearly with the number of items monitored. We ar-
gue that with multiple items per service, a percentage im-
provement in the range of 80 or 90 with respect to strong
consistency would translate into considerable savings in the
amount of data saved from being transmitted (high band-
width savings) as well as a substantial increase in the life-
times of the batteries of mobile devices, resulting from sav-
ings in the amount of energy expended. For instance, while
the maximum saving logged with monitoring a single stock
item are nearly ��� � �����	� bytes over a 25,000 second sim-
ulation period, the corresponding values for 30 stock items
are ��� ��
 ������
 bytes, both based upon the geometric distri-
bution. Figure 9 shows the effect of monitoring multiple
stocks. The y-axis now represents raw bandwidth savings,
quantified by the bytes that are not transfered with respect
to the strong consistency case.

5.4. Pull-Time Variations

The pull-time has a noticeable effect on performance. To
measure the effect of pull time on the results, we also run
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Figure 10. Sensitivity to Pull Time.

tests with pull time set to seven different values. These tests
are on the Headlines service. The effect on performance is
large at first for small increases in the pull time. As the pull
time increases, the improvement becomes smaller. Beyond
a pull time of a 100 seconds, there is little effect of pull time
on performance. Figure 10 shows the performances of the
seven values of pull time.

5.5. Variation in Distribution Parameters

We run simulations to test the effect of varying distribu-
tion parameters on performance. Though the data we col-
lected in our traces largely matches a Geometric distribu-
tion, with certain parameters, this will not always be the
case. We show results for the parameter P of the Geometric
distribution varying from 0.1 to 0.99. We expect perfor-
mance of the system to improve as the probability of zero
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change increases. This is confirmed by a plot of various val-
ues of P for given values of staleness, shown in Figure 11.
The increase in performance varies more with a change in
the graph parameters for lower values of P. As we go higher,
we reach the limit of improvement at around 92%.

5.6. Cost of the System

In general, our technique trades increased server mem-
ory and CPU costs for reduced bandwidth (at both server
and client) and reduced energy consumption at the client.
In this section, we present a brief discussion on the cost of
our model (in terms of memory) at the service side. Intu-
itively, it is clear that the memory requirements depend on
the number of clients being serviced, the number of services
(headlines, stock and weather for instance) that they wish to
monitor and the number of items per service that they sub-
scribe to.

We will now analyze the memory requirements of the
system. Let the system provide � services. Let each ser-
vice provide ��� items. Let each item consume ����� bytes
of memory. Let the number of simultaneous users be 	 . If
each user subscribes to a set of services 
�� , and keeps track
of 
���� items per service. Then, the memory required will
be

���
�� �
���
����
� ��� � � 
 �

Now, we substitute representative figures in the equation.
A reasonably popular portal may gather a million clients, so	�� � �	
 . The services deployed may be ��� � � . On av-
erage, a user will subscribe to about five services, and track
about 10 data items per service. Each data item will not cost



more than 50 bytes of memory (we would need two point-
ers and four integers to track staleness and numerical error).
Hence, we obtain a total cost of a little over 2 Gigabytes.
Of course, significant assumptions go into this derivations,
but this amount of memory appears reasonable, especially
if the data is spread across a cluster.

6. Conclusions and Future Work

Wireless devices allow users real-time access to person-
alized information such as news headlines, email, stock
quotes, and online auctions. Pushing all updates to such
rapidly changing information is wasteful of both net-
work bandwidth and battery power. Existing consistency
models for such services allow users only to specify a
coarse-grained timeout on how often information should be
pushed. In this paper, we argue for the benefits of a con-
tinuous consistency model for user access to wireless por-
tal services. Using this model, users are able to specify the
maximum error in their view of the data. For instance, users
may specify that they wish to receive an updated stock quote
only if the value changes by 3%. Services may also use
application-specific semantics to control data consistency—
e.g., new bids carry more weight as the auction draws to a
close. We use a simulator to model the bandwidth and en-
ergy benefits as a function of consistency and distribution
of updates to the underlying data. We further use a trace
based study of updates to weather, news, and stock quotes
to determine potential update distributions for input to our
simulator. While our trace is not necessarily representative,
simulation results using these update distributions indicate
significant improvements over strong consistency and over
more ad hoc coarse-grained timeouts.

In the future, we intend to extend our simulator to other
contexts, including sharing rapidly changing data in cooper-
ative proxy caches and content distribution networks. Fur-
ther, we are building a sample portal service that allows
users to specify their consistency requirements. This will
allow us to measure the computation and storage overhead
associated with providing flexible consistency guarantees in
the server. Further, we will be able to verify our simulation
results by accessing the sample service using real wireless
clients. This infrastructure will also allow us to measure
any additional savings associated with reducing the num-
ber of connections to/from the server and eliminating net-
work packets associated with TCP’s connection establish-
ment and tear-down. Finally, we wish to explore the use of
more benefits of user-specified weights on incoming mes-
sages at the server. For example, users may specify that
email messages coming from a particular source should be
assigned a higher update weight than others. This in turn
will force such important messages to be pushed to the user
more quickly.
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